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Abstract: Review on EHMT2, with data on DNA/RNA, on the protein encoded and where the gene is implicated. 
 

Identity 
Other names: BAT8, C6orf30, G9A, GAT8, KMT1C, 
NG36 

HGNC (Hugo): EHMT2 

Location: 6p21.33 

Local order: HSPA1A - HSPA1B - NEU1 - SLC44A4 
- EHMT2 - C2 - ZBTB12. 

DNA/RNA 
Description 
The human EHMT2/G9a Gene (NC_000006.11) is 
located on the minus strand and spans 17929 bps of 
genomic region (31847536 - 31865464). The long 
isoform of EHMT2/G9a comprises 28 exons,  

whereas the short isoform consists of 27 exons and 
lacks the sequence corresponding to exon 10 of the 
long isoform. 

Transcription 
EHMT2/G9a gene has two differentially spliced 
transcript variants (Brown et al., 2001). G9a transcript 
variant I NG36/EHMT2 (accession number 
NM_006709.3) also called long isoform or isoform a, 
has 3982 bps open reading frame. G9a transcript 
variant II NG36/EHMT2-SP1 (accession number 
NM_025256.5) also called short Isoform or isoform b, 
has open reading frame of 3880 bps (Brown et al., 
2001). 

Pseudogene 
There is no known pseudogene for EHMT2/G9a. 

 
Genomic location of EHMT2/G9a gene along with adjustment genes on chromosome 6 (minus strand). 
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EHMT2/G9a gene and RNA structure. Schematic representation of the human EHMT2/G9a gene organization demonstrating the 
relative position of each of the 28 exons (5'UTR, exons and 3'UTR are not drawn to scale). The shorter EHMT2 isoform b has missing 
exon 10 compared to full length EHMT2. 
 

Protein 
Description 
EHMT2/G9a isoform a (accession number 
NP_006700.3) is composed of 1210 amino acid 
residues while the shorter isoform b (accession number 
NP_079532.5) comprises 1176 amino acid residues 
(Figure 2). The G9a protein contains several 
evolutionarily conserved domains including, the N-
terminus transcription activation domain (TAD), E-rich 
domain containing 24 contiguous glutamic acid 
residues and the cysteine (Cys) rich domain that 
contains 12 cysteine residues, the centrally located 
ankyrin (ANK) domain containing seven ankyrin 
repeats and the C-terminus SET domain (Milner and 
Campbell, 1993; Brown et al., 2001; Dillon et al., 
2005). Functionally, the TAD domain of G9a has been 
shown to be involved in transcription activation and is 
sufficient to activate transcription of several nuclear 
receptor genes (Lee et al., 2006; Purcell et al., 2011, 
Bittencourt et al., 2012).  
The E-rich domain has been shown to be present in 
several proteins including the nuclear protein nucleolin, 
the chromosomal protein HMG1 and the centromere 
auto-antigen CENP-B (Milner and Campbell, 1993; 
Brown et al., 2001).  
The Cys rich domain acts as a binding site for neuron-
restrictive silencing factor (NRSF) and has been shown 
to be involved in repression of neuronal genes in non-
neuronal tissue (Roopra et al., 2004).  
The ANK domain, which is conserved in diverse 
proteins including transcription factors has been shown 
to be involved in protein-protein interactions (Milner 
and Campbell, 1993; Sedgwick and Smerdon, 1999), 
and binding to histone mono- and dimethylated H3 
lysine 9 marks (Collins et al., 2008). The C-terminal 

SET domain is responsible for the methyltransferase 
activity of G9a (Tachibana et al., 2001; Tachibana et 
al., 2002) and is also required for interaction with GLP 
(Tachibana et al., 2005). 

Expression 
EHMT2/G9a RNA is present in a wide range of human 
tissues and cells with high levels in fetal liver, thymus, 
lymph node, spleen and peripheral blood leukocytes 
and lower level in bone marrow (Milner and Campbell, 
1993; Brown et al., 2001). 

Localisation 
EHMT2/G9a is localized in the nucleus. It is mostly 
associated with euchromatic regions of chromatin and 
absent from heterochromatin (Tachibana et al., 2002). 

Function 
The histone methyltransferase G9a mono and 
dimethylates 'Lys-9' of histone H3 specifically in 
euchromatin (Tachibana et al., 2001; Tachibana et al., 
2002). Furthermore, G9a can also mono and 
dimethylates 'Lys-27' of histone H3 and mono 
methylates histone H1 (Tachibana et al., 2001; 
Chaturvedi et al., 2009; Trojer et al 2009; Weiss et al., 
2010; Wu et al., 2011).  
In addition, G9a methylates several non-histone 
proteins including p53, CDYL, WIZ, CSB, ACINUS, 
DNMT1, HDAC1, KLF12, MyoD, DNMT3a and 
MTA1 (Rathert et al., 2008; Haung et al., 2010; Chang 
et al., 2011; Ling at al., 2012; Nair et al., 2013) and 
automethylates (Chin et al., 2007; Rathert et al., 2008). 
G9a also plays an important role in mediating DNA 
methylation through its association with DNA 
methyltransferases (Epsztejn-Litman et al., 2008; 
Tachibana et al., 2008; Dong et al., 2008). 
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Schematic representation of the domain structure of EHMT2/G9a isoform a and isoform b. Isoform b is missing amino acid 
sequence 373-406 (34 aa) compared to the canonical isoform a (aa 1-1210). Isoform b is numbered according to isoform a, as well as 
separately. The positions of known domains within G9a are displayed. Transcription activation domain (TAD), E rich, glutamine-rich 
domain, NRSF- binding cysteine rich domain (12Cys) and ankyrin domain with seven ankyrin repeats and Set domain containing pre and 
post SET domains. 
 
Transcriptionally, G9a can function both as a 
corepressor and/or a coactivator of gene expression, 
(Collins and Cheng, 2010; Yoichi and Tachibana, 
2011; Shnakar et al., 2013; Lee et al., 2006; Chaturvedi 
et al., 2009; Purcell et al., 2011; Chaturvedi et al., 
2012; Bittencourt et al., 2012). The corepressor 
function of the G9a is dependent on its enzymatic 
activity as well as on its interaction with other factors 
that are involved in gene repression (Tachibana et al., 
2002; Yoichi and Tachibana, 2011; Chaturvedi et al., 
2012; Shnakar et al., 2013). G9a gets targeted to 
specific genes by associating with various 
transcriptional repressors and corepressors such as, 
CDP/Cut, E2F6, Gfi1/zfp163, Blimp-1/PRDI-BF1, 
REST/NRSF, ZNF217 and PRISM/PRDM6 and 
several others (Tachibana et al., 2002; Ogawa et al., 
2002; Gyory et al., 2004; Nashio and Walsh, 2004; 
Roopra et al., 2004; Daun et al., 2005; Davis et al., 
2006; Nagano et al., 2008; Banck et al., 2009; Yoichi 
and Tachibana, 2011; Shnakar et al., 2013). The 
coactivator function of the G9a does not require its 
enzymatic activity but requires association with other 
transcriptional activators and/or coactivators factors 
including CARM1, p300, RNA polymerases or the 
Mediator complex (Lee et al., 2006; Chaturvedi et al., 
2009; Purcell et al., 2011; Bittencourt et al., 2012; 
Chaturvedi et al., 2012). 
Functionally, G9a has been shown to play important 
roles in regulating the expression of genes involved in 
various developmental and differentiation processes. 

G9a is indispensible for early embryonic development 
(Tachibana et al., 2002; Yoichi and Tachibana, 2011). 
The G9a knockout embryonic stem cells (ESCs) show 
severe defects in differentiation, suggesting that G9a 
positively regulates ESCs differentiation (Tachibana et 
al., 2002; Feldman et al., 2006; Kubicek et al., 2007; 
Shi et al., 2008). Similarly, G9a is required for proper 
differentiation, survival and lineage commitment of 
adult or somatic stem cells i.e hematopoietic progenitor 
stem cells, retinal progenitor cells (Chen et al., 2012; 
Katoh et al., 1212). Genome wide studies have revealed 
the presence of G9a mediated large H3K9 
dimethylation (H3K9me2) chromatin blocks (LOCKS) 
on large chromatin region in the genome (Wen et al., 
2009; Chen et al., 2012). These G9a mediated LOCKS 
are necessary for proper differentiation as the loss of 
LOCKs inhibits or delays differentiation and lineage 
commitment of both embryonic and adult stem cells 
(Wen et al., 2009; Chen et al., 2012). In contrast to its 
positive regulatory role in maintaining differentiation, 
G9a has been shown to negatively regulate 
differentiation by repressing differentiation specific 
genes in myogenesis and adipogenesis (Shankar et al., 
2013; Ling et al., 2012a; Ling et al., 2012b; Wang and 
Abete-Shen, 2011; Wang et al., 2013). 
Furthermore, G9a has been shown to regulate gene 
expression in multiple other biological processes 
including, genomic imprinting (Nagano et al., 2008; 
Wagschal et al., 2008), germ cells development 
(Tachibana et al., 2007), erythropoiesis (Chaturvedi et 
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al., 2009; Chaturvedi et al., 2012), T and B cell 
mediated immune response (Thomas et al., 2008; 
Lehnertz et al., 2010) and nuclear receptor mediated 
gene expression (Lee et al., 2006; Purcell et al., 2011; 
Bittencourt et al., 2012).  
In the brain, G9a is required for proper expression of 
genes involved in lineage specific expression (Roopra 
et al., 2004, Schaefer et al., 2009), memory 
consolidation (Gupta et al., 2012), and cocaine induced 
neuronal responses and behavioural plasticity (Maze et 
al., 2010).  
G9a has been also shown to plays critical role in cell 
proliferation (Yang et al., 2012), senescence 
(Takahashi et al., 2012), DNA replication (Esteva et al., 
2006; Yu et al., 2012), and in the establishment of 
proviral gene silencing (Leung et al., 2011). 

Homology 
EHMT2/G9a homologues have been found in various 
species like chimpanzee (99.7 % homology), cow 
(98.1% homology), rat (95.97% homology), C. elegans 
(25 % homology) and mouse (95.5% homology). 

Mutations 
Germinal 
No mutations have been reported so far. 

Somatic 
No mutations have been reported so far. 

Implicated in 
Various cancers 
Note 
EHMT2/G9a is overexpressed in various types of 
tumors, which include solid and haematological tumors 
(Cho et al., 2011). High-level expression of G9a in 
cancerous cells has been correlated with aggressiveness 
and poor prognosis in patients of lung, hepatocellular, 
ovarian, colon cancer and B cell chronic lymphocytic 
leukemia (Haung et al., 2010).  
Functionally, G9a has been linked to multiple cellular 
functions associated with tumor progression including 
proliferation, adhesion, migration, invasion, and cancer 
stem cell maintenance.  
Knockdown of G9a protein in cancer cells induces 
apoptosis suggesting that G9a plays a crucial role in 
cell cycle regulation of cancerous cells (Watanabe et 
al., 2008).  
Use of G9a-specific inhibitors, had been shown to 
significantly suppress the growth of cancerous cells, 
indicating that G9a enzymatic activity plays an 
important role in cancer development and growth (Cho 
et al., 2011).  
The following paragraphs summarize the discoveries 
on the functional role of G9a in various types of cancer 
development. 

Lung cancer 
Note 
Lung cancer is a disease characterized by uncontrolled 
cell growth of lung tissue. G9a is highly expressed in 
aggressive lung cancer cells, and its elevated level has 
been correlated to poor prognosis with increase in cell 
migration, invasion and metastasis (Chen et al., 2010).  
G9a enhances the metastasis of lung cancer cells by 
repressing expression of the cell adhesion molecule Ep-
CAM. High level of G9a in lung cancer cells promotes 
enrichment of DNA methylation and H3K9 
dimethylation marks on Ep-CAM gene promoter 
region, leading to repression of this gene (Chen et al., 
2010).  
Depletion of the G9a protein in lung cancer cells 
reduces the levels of H3K9 dimethylation and 
decreases recruitment of the transcriptional cofactors 
HP1, DNMT1, and HDAC1 to the Ep-CAM promoter, 
leading to de-repression of Ep-CAM gene and 
inhibition of cell migration and invasion (Chen et al., 
2010). 

Breast cancer 

Note 
Human breast cancer is a heterogeneous disease with 
respect to molecular alterations, incidence, survival, 
and response to therapy. Claudin-low breast cancer 
(CLBC) is characterized by the expression of markers 
of epithelial-mesenchymal transition (EMT), which has 
been linked with CLBC metastasis (Dong et al., 2012).  
G9a promotes EMT expression by repressing E-
cadherin expression in CLBC models. G9a associates 
with Snail and recruits HP1 and DNA 
methyltransferases to the E-cadherin gene promoter for 
repression (Dong et al., 2012).  
Knockdown of G9a in CLBC models restores E-
cadherin expression by suppressing H3K9me2 and 
DNA methylation, which results in inhibition of cell 
migration, invasion, suppression of tumor growth and 
metastasis (Dong et al., 2012). 

Prostate cancer 
Note 
Prostate cancer is one of the most frequent cancers in 
men. G9a is coexpressed at high levels with Runx2, in 
metastatic prostate cancer cells and directly regulates 
the expression of several Runx2 target genes, which are 
important regulators of tumor growth, invasion and/or 
metastasis (Purcell at al., 2012).  
Downregulation of G9a in prostate cancer cells 
represses several RUNX2 target genes including, 
MMP9, CSF2, SDF1, CST7 and enhances the 
expression of others, such as MMP13 and PIP (Purcell 
et al., 2012). A study by Kondo et al., (2008) 
demonstrates that downregulation of G9a in prostate 
cancer cells, disrupts centrosome and chromosome 
stability, leading to inhibition of cancer cell growth.  
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Another study by Yuan et al., (2012) demonstrates that 
treatment of pancreatic cancer cells with G9a inhibitor 
BRD4770 induces senescence and inhibits 
proliferation. Collectively, these studies reveal a 
potential oncogenic role of G9a in prostate cancer 
progression. 

Gastric cancer 
Note 
G9a is involved in gastric cancer progression by 
inhibiting expression of the tumor suppressor gene 
RUNX3. In RUNX3 expressing gastric cell lines, 
hypoxia leads to upregulation of G9a, leading to the 
accumulation of H3K9me2 marks on RUNX3 promoter 
and repression of RUNX3 expression (Lee et al., 2009).  
Knocking down G9a in hypoxia-induced gastric cancer 
cells restores the expression of RUNX3 with 
suppression of gastric cancer progression (Lee et al., 
2009). 

Bladder carcinomas 
Note 
G9a expression is upregulated in human bladder 
carcinomas compared to non-neoplastic bladder tissues 
(Cho et al., 2011).  
Enhanced expression of G9a promotes the proliferation 
of bladder carcinomas cells by negatively regulating 
the tumor suppressor gene SIAH1 (Cho et al., 2011).  
G9a suppresses transcription of the SIAH1 gene by 
binding to its promoter followed by methylation of 
lysine 9 of histone H3.  
Downregulation of G9a activity by knock down or 
through the use of a G9a specific inhibitor, BIX-01294, 
significantly suppresses the growth of cancer cells by 
de-repressing the SIAH1 gene (Cho et al., 2011). 

Neuroendocrine tumors 
Note 
Neuroendocrine tumors (NETs) are neoplasms that 
arise from cells of the endocrine and nervous systems. 
A study by Kim et al., (2013) has revealed altered 
expression of Wnt/β-catenin signaling components in 
neuroendocrine tumors.  
G9a contributes to the pathogenesis and growth of 
NETs by upregulating the expression of β-catenin. 
High level expression of G9a in neuroendocrine tumors 
downregulates the expression of specific β-catenin 
inhibitory genes inclusing DKK-1, DKK-2, and WIF-1, 
leading to overexpression of β-catenin, which in turn 
leads to increased cell proliferation and tumor growth 
(Kim et al., 2013).  
Use of the G9a inhibitor UNC0638 derepresses β-
catenin inhibitory genes and suppresses Wnt/β-catenin 
induced cell proliferation, colony formation and tumor 
growth, demonstrating the oncogenic potential of G9a 
in NETs progression (Kim et al., 2013). 
 
 

Haematological malignancies 
Note 
G9a is over expressed in haematological malignancies 
including AML and CML (Haung et al., 2010; Cho et 
al., 2011).  
The oncoprotein EVI-1 (ecotropic viral integration site-
1) is aberrantly expressed in myeloid leukemias and has 
been linked to a poor patient survival rate. A study by 
Goyama et al., (2010) demonstrates that G9a interacts 
EVI-1 and contributes to EVI-1-mediated 
leukemogenesis.  
Depletion of G9a protein in EVI-1-expressing 
progenitors significantly reduces their colony-forming 
activity, indicating a possible role of G9a in generating 
leukemia-initiating cells by Evi-1 (Goyama et al., 
2010).  
JAK2 (Janus kinase 2) mediated phosphorylation plays 
a critical role during normal hematopoiesis and 
leukemogenesis.  
JAK2 induces leukemogenesis by activating the lmo2 
leukemogenic gene through phosphorylation of histone 
H3Y41 and exclusion of HP1α from chromatin 
(Dawson et al., 2009).  
A recent study by Son et al., (2012) demonstrated that 
G9a negatively regulates the expression of JAK2 and 
favors ATRA-mediated leukemia cell differentiation. 
G9a mediated repression of JAK2, results in the 
downregulation of H3Y41 phosphorylation on the 
leukemogenic oncogene lmo2 promoter, indicating a 
role for G9a in JAK2-H3Y41P-HP1α transcriptional 
signaling during leukemogenesis (Son et al., 2012). 

Breakpoints 
Note 
No variables are reported for EHMT2/G9a gene so far. 

To be noted 
Note 
In summary, dysregulation of EHMT2/G9a is emerging 
as an important player in the pathobiology of various 
forms of cancer suggesting that G9a could serve as a 
promising therapeutic target for future treatments 
notably through the use of specific chemical inhibitors.  
For example, BIX-01294; a specific inhibitor of G9a 
methyltransferase activity has been shown to 
effectively suppress the growth of cancer cells (Cho et 
al., 2011).  
Another G9a inhibitor, BRD4770 induces senescence 
and inhibits proliferation of cancer cells (Yuan et al., 
2012). Finally, a third G9a inhibitor UNC0638 showed 
similar results as BIX-01294 and BRD4770 and 
inhibits cell proliferation, colony formation and tumor 
growth (Kim et al., 2013).  
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It will be interesting to test the effectiveness of these 
inhibitors in vivo. Further studies are required for better 
understanding of the molecular mechanism of G9a 
mediated positive and negative gene regulatory role in 
cancer development and for developing efficient 
therapy. 
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