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SUMMARY
Dynamiccellular processessuchasdifferentiationaredrivenbychanges in theabundancesof transcription fac-
tors (TFs). However, despite years of studies, our knowledge about the protein copy number of TFs in the nu-
cleus is limited. Here, by determining the absolute abundances of 103 TFs and co-factors during the course
of human erythropoiesis, we provide a dynamic and quantitative scale for TFs in the nucleus. Furthermore,
we establish the first gene regulatory network of cell fate commitment that integrates temporal protein stoichi-
ometry datawithmRNAmeasurements. Themodel revealedquantitative imbalances inTFs’ cross-antagonistic
relationships that underlie lineage determination. Finally, wemade the surprising discovery that, in the nucleus,
co-repressors are dramatically more abundant than co-activators at the protein level, but not at the RNA level,
withprofound implications for understanding transcriptional regulation. Theseanalyses provide a uniquequan-
titative framework to understand transcriptional regulation of cell differentiation in a dynamic context.
INTRODUCTION

Quantitative changes in transcription factor (TF) abundances

drive dynamic cellular processes such as differentiation by acti-

vating lineage-specific gene expression programs and simulta-

neously repressing competing lineages (Graf and Enver, 2009;

Orkin and Zon, 2008). At the mechanistic level, biochemical

studies have shown that TFs function through the recruitment

and/or stabilization of co-factors such as chromatin modifiers

to target genes (Brand et al., 2019; Demers et al., 2007). On

a more global scale, genomic and transcriptomic studies

have uncovered intricate gene regulatory relationships

whereby specific combinations of TFs cooperate or compete

to regulate cell-specific gene programs (Reiter et al., 2017).

The complexity of these relationships is best captured using

gene regulatory networks (GRNs) to model the activating and

repressing roles of TFs, which underlie lineage fate decisions

in multipotent cells such as hematopoietic progenitors (Gött-

gens, 2015; Novershtern et al., 2011; Rothenberg, 2019; Swiers

et al., 2006).
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In contrast to the current profusion of transcriptomic data,

large-scale quantitative proteomic information is scarce for

low-abundance proteins such as TFs and co-factors, particularly

in human stem/progenitor cells. This critical lack of quantitative

proteomic data is a major impediment to addressing funda-

mental questions in transcriptional regulation, such as TF and

co-factor availability in the nucleus (Schmidt et al., 2016). Lack

of quantitative proteomic data is also problematic for under-

standing dynamic processes such as cell fate decisions or differ-

entiation that are based on changes in the stoichiometry of line-

age-specifying (LS) TFs (Graf and Enver, 2009; Orkin and Zon,

2008; Palii et al., 2019). In that regard, it is particularly striking

that none of the current GRNs for hematopoiesis incorporate

quantitative protein abundance data for TFs.

Integration of proteomic data into GRNs is a significant chal-

lenge as it requires the ability to measure the abundances of

multiple proteins relative to one another (i.e., stoichiometry)

within the same sample (Vitrinel et al., 2019), information that

cannot easily be obtained with antibody-basedmethods. More-

over, for dynamic GRNs, the same proteins must be repeatedly
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Figure 1. Absolute Quantification of Transcription Factors and Co-factors during Human Erythropoiesis.

(A) Schematic of SRM assay development to quantify TFs and co-factors during hemato/erythropoiesis. Absolute abundance was determined at each time point

using either the SIL-based or the Anchor protein-based quantification method. Two biological replicates were performed. SIL, stable isotope labeled; IS, internal

standard.

(B) Range of protein abundances in the nucleus averaged for all time points.

(C) RNA-seq coverage of the GATA2 gene over time as displayed by the UCSC genome browser. Replicate 1 is shown as a representative example.

(legend continued on next page)
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measured over time in different samples.While mass spectrom-

etry (MS) is a powerful method for protein identification, abso-

lute quantification is more challenging. A number of approaches

have been described for absolute quantification, including the

use of synthetic isotopically labeled (SIL) peptides as internal

standards, which are typically used for quantification of rela-

tively small numbers of proteins, and label-free methods for

large-scale quantification (for review, see Liu et al., 2016).

Both stable isotope dilution (SID) and label-free approaches

can be used in conjunction with targeted MS approaches,

such as selected reaction monitoring (SRM), which are well-

suited for reproducible and quantitative measurements of a

defined set of analytes over a wide dynamic range of abun-

dances (Narumi et al., 2016; Simicevic et al., 2013). However,

thus far no one has developed and deployed protein detection

methods with the required sensitivity and reproducibility to sys-

tematically determine the absolute abundances of endogenous

TFs and co-factors in rare stem and progenitor cells.

Here, we developed targeted SRM assays in hematopoietic

and erythroid nuclear extracts and applied these assays along

with SIL peptides as internal standards. This allowed us to sys-

tematically determine the absolute abundances of 103 endoge-

nous TFs and co-factors at 13 sequential time points as human

hematopoietic stem and progenitor cells (HSPCs) differentiate

along the path to erythroid cells. In addition to defining the range

of protein concentration (copy number per nucleus) for master

regulators of hematopoiesis and erythropoiesis, the data re-

vealed surprising differences in stoichiometry and dynamics be-

tween TFs, co-activators, and co-repressors that occur at the

protein level, but not at the RNA level with important implications

for understanding gene regulation during differentiation. Finally,

through mathematical modeling, we generated for the first time

a dynamic regulatory network of erythroid commitment from he-

matopoietic stem cells (HSCs) that integrates quantitative

changes in RNA and protein levels (stoichiometry) of TFs

over time.

RESULTS

Absolute Quantification of Transcription Factors during
Human Erythropoiesis
While proteomic studies have been performed in erythroid cells

(Amon et al., 2019; Brand et al., 2004; Gautier et al., 2016; Jas-

sinskaja et al., 2017; Liu et al., 2017), no previous study has

used targeted MS approaches to provide systematic and abso-

lute quantification of TF proteins with simultaneous mRNA mea-

surements during the dynamic process of erythroid differentia-

tion. Furthermore, previous MS-based studies have not

measured TFs in primary human progenitor cells prior to lineage

commitment, preventing the study of quantitative changes in TFs
(D) Quantification of GATA2 protein over time by SRM. Ion chromatograms of endo

the Skyline software. Replicate 1 is shown as a representative example.

(E) Correlationmatrix between RNA-seq experiments at the indicated days. The he

right) were attributed to the time points using CyTOF as previously described (Pa

(F) k-means clustering analysis of normalized protein abundances at the indica

heatmap after normalization.

See also Figures S1, S2, and S3; Data S1; and Tables S1, S2, S3, and S4.
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that underlie cell fate decisions. To address this, we employed a

well-characterized ex vivo culture system in which cord blood-

derived human multipotent HSPCs are induced to differentiate

along the erythroid lineage (Giarratana et al., 2005; Palii et al.,

2011a). Previously, using single-cell mass cytometry, we

showed that in this system, cells recapitulate all sequential

stages of erythropoiesis over time, includingmultipotent progen-

itors (MPP) at day 0, common myeloid progenitors (CMP) and

megakaryocyte-erythroid progenitors (MEPs) at days 2–4,

erythroid progenitors ‘‘colony-forming-unit erythroid’’ (CFU-Es)

at days 6–11, followed by terminally differentiating precursors:

pro-erythroblasts (ProEBs) at day 12, basophilic erythroblasts

(Baso_EBs) at day 14, and polychromatophilic erythroblasts

(Poly_EBs) at day 16 (Palii et al., 2019). Thus, this provides an

ideal system for quantitative proteomic and transcriptomic ana-

lyses. Cells were harvested at 13 sequential time points and pro-

cessed in parallel for RNA sequencing (RNA-seq) and nuclear

protein extraction (Figure S1A). First, RNA-seq analysis revealed

a main trajectory along two principal components from day 0 to

day 16 (Figure S1D). Furthermore, a correlation heatmap indi-

cated that the transcriptome changes gradually throughout the

time series with sharper changes at day 2 (transition to CMP/

MEP), day 11.5 (transition to ProEB), and day 14 (transition to Ba-

so_EB) (Figures 1E and S2A). For proteomic analyses, nuclear

extracts were first analyzed using an unbiased data-dependent

MS approach with isobaric eight-plex iTRAQ (isobaric tags for

relative and absolute quantitation) reagents (Ross et al., 2004).

Analysis of iTRAQ data allowed identification and relative quan-

tification of 3,905 proteins, including 655 TFs, over time (Tables

S1 and S2; Figure S1F). K-means clustering with gene ontology

(GO) analyses revealed groups of proteins with enrichment in

erythroid-related categories (e.g., ‘‘O2 transport’’ in Baso_EB

[cluster 8], ‘‘cell cycle’’ in the highly proliferative CFU-E popula-

tions [cluster 6]) (Figure S1F; Table S2). Furthermore, the GO

term ‘‘eukaryotic translation initiation’’ was found enriched in

proteins that increase at the ProEB stage (day 12), consistent

with the importance of protein translation in terminal erythroid

differentiation (Alvarez-Dominguez et al., 2017). Interestingly,

we found that proteins involved in oxidative phosphorylation

(cluster 3) increase at day 2, which coincides withMPPs commit-

ment to themyeloid/erythroid lineage. Given that oxidative phos-

phorylation correlates with lineage commitment (Oburoglu et al.,

2016), this finding further supports the relevance of our ex vivo

differentiation system to reveal molecular events that occur in

early hematopoietic progenitors.

To systematically determine the absolute concentration of TFs

and co-factors, we employed SRM-based targeted MS together

with SIL peptide-based quantification (Figure 1A). First, we es-

tablished an Erythroid SRM TF Atlas consisting of parameters

needed to monitor 411 isotopically heavy and light peptide pairs,
genous (red) and SIL (blue) EVSPDPSTTGAASPASSSAGGSAAR peptide from

atmap displays Pearson correlations. Stages of differentiation (indicated on the

lii et al., 2019).

ted days. Protein abundances were measured by SRM and are shown as a
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corresponding to 150 proteins (1–4 peptide pairs per protein)

(Tables S3 and S4). SRMassay development, including selection

of proteotypic peptides, transition ions, and the linear ranges of

quantification is described in STAR Methods. Absolute quantifi-

cation was then achieved by a combination of SID and label-free

quantification for 103 proteins that span various categories (e.g.,

DNA binding TFs, co-activators, co-repressors, chromatin mod-

ifiers) at 13 sequential time points from MPP to basophilic eryth-

roblasts (Figures 1A and S2B, Data S1; Table S4; see STAR

Methods). Comparing SRM results with iTRAQ measurements,

we found a good correlation in protein changes during differen-

tiation (Figure S2C). Importantly, SRMmeasurements covered a

wide dynamic range of nuclear protein abundances, ranging

from less than 500 copies for some factors (e.g., BACH1,

GATA2, KAT2A) to above 100,000 copies for others (e.g.,

CTCF, TRIM28/KAP1, CHD4) (Figure 1B). Notably, our CTCF

measurements are consistent with copy number estimates ob-

tained using fluorescence correlation spectroscopy in non-he-

matopoietic cells (Cattoglio et al., 2019). Furthermore, for some

proteins, we validated SRM-based quantification with quantita-

tive western blots (Figure S3).

Using clustering analysis, we identified several groups of

temporally regulated proteins (Figure 1F). Interestingly, all mas-

ter regulators of erythropoiesis (GATA1, TAL1, KLF1, KLF3,

GFI1B, STAT5A) are characterized by a gradual increase from

MPP to late CFU-E, followed by a sharp decline starting at the

ProEB stage that marks the beginning of terminal erythroid dif-

ferentiation (Figures 1D and 1F). This decrease was confirmed

by western blot (Figure S1E). While most factors are present at

low levels in terminally differentiated erythroid cells, some TFs

are more abundant, including NFE2, MAFG, FOXO3 (Liang

et al., 2015), SOX6, and STAT1, 2, and 3, suggesting additional

roles during erythroid maturation. In contrast, TFs that play crit-

ical roles in HSC or in promoting non-erythroid lineages (e.g.,

ETV6, ERG, PU.1, FLI1, RUNX1) are expressed at higher levels

at early stages (days 0–4), consistent with lineage priming, and

gradually decrease as the cells progressively commit toward

the erythroid lineage (Figure 1F). Thus, our differentiation system

faithfully mimics the dynamics of erythropoiesis from early to late

stages.

Major Discrepancies in Protein versus mRNA
Abundances for Master Regulators of Hematopoiesis
and Erythropoiesis
Having quantified protein and mRNA abundances simulta-

neously for multiple TFs (see, for example, GATA2 in Figures

1C and 1D), we explored the correlation between mRNA and
Figure 2. Major Discrepancies in Protein versus mRNA Abundances fo

(A) Correlation between mRNA and protein abundances at the indicated days. The

representing a protein-mRNA pair. The right panel shows the calculated correlat

(B) Correlation between the changes in mRNA and protein levels over time during

correlations are in orange.

(C) Protein (blue) and mRNA (orange) abundances for the indicated genes during

(D) mRNA (top) and protein (bottom) stoichiometry for the indicated genes during

(E) mRNA (top) and protein (bottom) stoichiometry for the indicated genes during

(F) mRNA (top) and protein (bottom) stoichiometry for the indicated genes during

See also Data S2 and our Human Erythropoiesis TFs website (http://apps.system
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protein levels. Consistent with previous studies in other cell

types (Liu et al., 2016; Vogel and Marcotte, 2012), we found a

good protein versus mRNA correlation in cells starting at day

2, with Spearman coefficients ranging from 0.40 to 0.56

(Figure 2A). In contrast, the correlation between mRNAs and

proteins is extremely low (<0.25) in early progenitors at day 0 (Fig-

ure 2A). This finding, which may be explained by the low protein

translation rate in HSCs (Liu et al., 2017; Signer et al., 2014), in-

dicates that post-transcriptional regulation may be particularly

important to determine protein abundance in stem/progeni-

tor cells.

Next, wemeasured the correlation of mRNA and protein levels

over time (Figure 2B). We found that for most genes there is a

positive correlation (green bars), indicating that changes in pro-

tein levels result in large part from changes in their mRNAs abun-

dance during erythroid differentiation. However, some genes

display low or negative correlations (orange bars). Among genes

that display a high correlation between mRNA and protein, we

found the non-erythroid TFs FLI1 and PU.1 (also called SPI1),

both of which decrease gradually during erythropoiesis, but

also SOX6, HOXB4, and GATA2 that increase during differentia-

tion (Figure 2C). In contrast, other genes display major discrep-

ancies in protein versus mRNA dynamics (e.g., KAT2A,

RUNX1). Interestingly, all master regulators of erythropoiesis

(i.e., GATA1, KLF1, KLF3, and TAL1) display a similar pattern

of changes with protein levels increasing faster than mRNA

levels until the ProEB stage (day 11.5) when they decrease by

40 to 50% even though their transcripts continue to

increase (Figures 2C and 2D). This sharp decline in TF protein

levels in the nucleus starting at the ProEB stage was also de-

tected by iTRAQ (Table S1) and western blot (Figure S1E)

and coincides with a drastic change in the transcriptome

(Figures 1E and S2A) as the cells enter terminal differentiation.

All genes can be explored in Data S2 or on our website http://

apps.systemsbiology.net/app/Transcription_Factor_Protein_RNA_

Erythropoiesis.

An important aspect of transcriptional regulation is the change

in relative abundances between TFs. Examining master regula-

tors of hematopoiesis, our results reveal major differences in

stoichiometry. For instance, at the transcript level, KLF1 is the

most highly expressed TF in erythroid cells (Figure 2D). However,

at the protein level, GATA1 is the most abundant TF with over

41,000 copies per nucleus in late CFU-E compared to fewer

than 18,000 copies for KLF1, TAL1, or NFE2 (Figure 2D; Table

S4). This high abundance of GATA1 protein is likely due to

enhanced translation efficiency as shown by polysome profiling

(Khajuria et al., 2018; Liu et al., 2017).
r Master Regulators of Hemato/Erythropoiesis

left panel shows a representative example of a dot plot at day 8 with each dot

ion at each day.

differentiation from day 0 to day 14. Positive correlations are in green. Negative

differentiation. See Data S2 for all 103 measured genes.

differentiation.

differentiation.

differentiation.

sbiology.net/app/Transcription_Factor_Protein_RNA_Erythropoiesis).

http://apps.systemsbiology.net/app/Transcription_Factor_Protein_RNA_Erythropoiesis
http://apps.systemsbiology.net/app/Transcription_Factor_Protein_RNA_Erythropoiesis
http://apps.systemsbiology.net/app/Transcription_Factor_Protein_RNA_Erythropoiesis
http://apps.systemsbiology.net/app/Transcription_Factor_Protein_RNA_Erythropoiesis


Figure 3. Quantitative Gene Regulatory Network of Erythroid Commitment

(A) Modeling approach: mRNA dynamics are modeled depending on regulator protein abundances. Transcriptional activation is represented as a ratio of two

linear functions, corresponding to activation and repression, with constant rates multiplied by protein abundances. mRNA degradation is modeled as a

linear decay.

(legend continued on next page)
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In addition to erythroid-specifying TFs, we also quantified TFs

that are involved in stem cell maintenance (e.g., ERG, ETV6,

RUNX1) and/or specification of alternate hematopoietic lineages

(e.g., PU.1, FLI1, CEBPß). Interestingly, even though these non-

erythroid factors gradually decrease during differentiation, they

are still detectable at the protein and RNA level until late CFU-

Es (Figures 2C and 2D; Table S4), which suggests some degree

of lineage plasticity in late progenitors. In particular, we exam-

ined the relative levels of two antagonist TFs, GATA1 and

PU.1, which promote mutually exclusive hematopoietic lineages

(Huang et al., 2007). As expected, we observed a gradual change

in the GATA1/PU.1 ratio, at both the RNA and protein levels (Fig-

ure 2E), showing that for some factors, RNA levels can be used

as a surrogate for protein levels. Another TFs switch necessary

for erythroid maturation is the GATA switch (Katsumura et al.,

2017). It has been shown that during hematopoiesis GATA2 is

expressed earlier than GATA1. As erythroid differentiation pro-

ceeds, GATA1 progressively represses GATA2 transcription

such that when the cells reach the ProEB stage, GATA1 replaces

GATA2 on target genes (Huang et al., 2016). It is currently

thought that this exchange of GATA2 for GATA1 genomic bind-

ing (called the ‘‘GATA switch’’) is due to GATA2 protein being

progressively displaced from its binding sites by increased levels

of GATA1 through a competition mechanism. However, even

though this view is consistent with our RNA data (Figure 2F,

top), it is not compatible with our protein measurements. First,

we found that GATA1 protein abundance largely exceeds that

of GATA2 from the earliest CFU-E stage (Figure 2F, bottom),

showing that in contrast to the currently accepted model,

GATA2 binds to specific genomic sites even in the presence of

an excess of GATA1. Furthermore, our data show a decrease

(not an increase) in GATA1 protein levels at the proEB transition

(Figure 2F, bottom, day 10.5 to day 12). Importantly, GATA2 pro-

tein levels also decrease (about 10-fold—from 4,000 to 400

copies) at this time point. Thus, the most likely explanation for

GATA2 decreased genomic binding is not an increase in

GATA1 (which does not occur at the protein level at this time

point) but a decrease in GATA2, which occurs at the RNA and

protein levels (Figures 2C, 2D, and 2F). The details of the molec-

ular mechanism underlying this switch warrant further

investigation.

Notably, we confirmed GATA1 expression in early progenitors

by western blot (Figure S1B), and our finding of a high GATA1/

GATA2 protein abundance ratio is consistent with previous

data showing both a higher translational efficiency and a higher

protein stability of GATA1 compared to GATA2 (Khajuria et al.,

2018; Lurie et al., 2008; Minegishi et al., 2005). Thus, while in

some cases transcripts can be used as a surrogate for proteins,
(B) Quantitative network diagrams depicting dynamic changes in transcriptional

repression, respectively. Link transparency indicates the relative contribution of

effects, depending on regulatory parameter and regulator abundance). Link thickn

greater regulatory effect per TF protein molecule). The network is also available

HumanErythropoiesisGRN/.

(C and D) Quantitative imbalance in the GATA1-PU1 (C) and KLF1-FLI1 (D) cro

strengths of the regulatory relationships are indicated at each time point. Regulato

Ri as log2(1+Ki*Ri).

See also Table S5 and Video S1.
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in other cases they cannot, strongly emphasizing the importance

of direct protein quantification.

Quantitative Gene Regulatory Model of Erythroid
Lineage Commitment
Gene regulatory networks (GRNs) provide a useful way to repre-

sent complex regulatory relationships that underlie important

processes such as cell fate decisions (Doré and Crispino,

2011; Göttgens, 2015; Novershtern et al., 2011; Rothenberg,

2019). However, because of the lack of quantitative proteomic

data on TFs, it has not been feasible to build networks that inte-

grate quantitative changes in TF protein levels. Having quantified

hematopoietic and erythropoietic TFs at multiple sequential time

points, we sought to build a temporal GRN that integrates quan-

titative changes in protein and mRNA abundances of key TFs

(Figure 3). We used both ‘‘core’’ hematopoietic factors with

known functions in cell fate decisions (e.g., PU.1, GATA1,

GATA2, FLI1, KLF1) and other factors (e.g., ERG, E2F4, KLF3,

HOXB4), for a total of 14 genes. Focusing on transcriptional

regulation, mathematical modeling with differential equations

was used to explain the observed mRNA trajectory of each

gene as a function of the observed protein trajectories of candi-

date regulators. The model is quantitative in that it estimates the

relative contribution(s) of distinct TFs to the regulation of their

respective targets (represented as transparency of the links; Fig-

ures 3B–3D). (Also see Figures 4A and 4B.) Unique to our model,

the parameters that quantify regulatory strength are linked to the

absolute abundance of proteins. This allows us to discriminate,

for example, between a strong activator at low abundance and

a weak activator at high abundance (represented as the thick-

ness of the links). First, we found that the model correctly reca-

pitulates the sequential cross-antagonisms between LS-TFs

that underlie cell fate decisions, with the GATA1:PU.1 antago-

nism that regulates erythroid versus myeloid lineage choice

(Huang et al., 2007) being detected first (day 0) followed by the

KLF1:FLI1 antagonism (day 2) that regulates a subsequent

erythroid versus megakaryocyte fate (Frontelo et al., 2007; Palii

et al., 2019) (Figure 3B; Video S1). Strikingly, these cross-antag-

onisms are not ‘‘equilibrated,’’ with for instance the repression of

PU.1 byGATA1 being three times stronger than the reverse reac-

tion at day 0, and 19 times stronger at day 4 (Figure 3C). This

quantitative imbalance has not been described in previous

network models and may reflect an early (but reversible) bias to-

ward the erythroid lineage. Most importantly, our finding that

antagonistic relationships between TFs are quantitatively imbal-

anced provides a mechanism to explain the observed instability

of multipotent progenitors that do not exist as stable states but

rather as constantly changing entities (Laurenti and Göttgens,
regulation of erythroid commitment. Blue and red links indicate activation and

a TF to the regulation of its targets (more transparent links represent weaker

ess indicates the regulatory effect per TF proteinmolecule (thicker links indicate

in BioTapestry format (Paquette et al., 2016) at http://grns.biotapestry.org/

ss-antagonistic relationships over time. Excerpt from the network in (B). The

ry strength or transparency score was determined from the parameters Ki and

http://grns.biotapestry.org/HumanErythropoiesisGRN/
http://grns.biotapestry.org/HumanErythropoiesisGRN/


Figure 4. Quantitative Regulatory Relationships

(A) Relative contribution of each TF to the activation of its targets within the GRN. The average activation of a regulator X on target gene Y is computed as AX*KXY,

where AX is the average protein expression of gene X over the days 0, 2, 4, 6, 8, and 10, and KXY is the GRN’s regulatory parameter quantifying its effect on gene Y.

The activation percentage is AX*KXY divided by the sum of average activations from all activators of Y.

(legend continued on next page)
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2018). Similarly, our model revealed the dynamics of the

FLI1:KLF1 cross-antagonism that starts at day 2, decreases at

day 6, and finally disappears at day 8 (Figure 3D). Thus, our pro-

teomic-based network is able to capture the temporal and quan-

titative aspects of gene regulation to model the dynamics of

erythroid lineage commitment. To facilitate visualization of the

network, an interactive version is provided in BioTapestry

format (Paquette et al., 2016) at http://grns.biotapestry.org/

HumanErythropoiesisGRN/.

In addition to TF cross-antagonisms, the model confirmed a

number of previously known regulatory links including the

GATA1/GATA2 regulatory loop with GATA2 activating GATA1

and GATA1 progressively repressing GATA2 (Katsumura et al.,

2017), the ERG-mediated activation of RUNX1 (Taoudi et al.,

2011), the TAL1-mediated activation of GATA1 and GFI1B (Gött-

gens, 2015), the KLF1-mediated activation of KLF3 (Ilsley et al.,

2017), the GATA2-mediated activation of HOXB4 (Fujiwara et al.,

2012), and others (Figure 3B). Furthermore, the model identified

novel putative links such as TAL1- and KLF1-mediated activa-

tion of E2F4, E2F4-mediated activation of KLF3, TAL1-mediated

activation of HOXB4, and others. These novel regulatory links are

likely important for erythropoiesis. For instance, E2F4 has been

shown to promote erythropoiesis (Kinross et al., 2006), and our

results suggest that this may be mediated at least partially

through the activation of KLF3. Most importantly, the model of-

fers a temporal and quantitative view of these regulatory relation-

ships. For instance, we found that over the entire time course,

the contribution of TAL1 to the activation of the GATA1 gene is

greater than the contribution of GATA2 (with GATA2 being

more important at early stages) (Figure 4A). Interestingly, this is

not because TAL1 is a stronger activator of GATA1, but instead,

this is due to the fact that the TAL1 protein is on average three

times more abundant than the GATA2 protein (Figure 4B).

Thus, the model is able for the first time to quantitatively dissect

the relative contributions of different factors to the regulation of

their target genes.

To validate our network model, we induced the knockdown

of four different TFs (i.e., GATA2, GATA1, TAL1, and KLF1),

followed by qRT-PCR assessment of their target genes. All reg-

ulatory relationships tested were validated, including ‘‘acti-

vating’’ links (e.g., GATA2-mediated activation of RUNX1) and

‘‘repressive’’ links (e.g., GATA1-mediated repression of PU.1)

(Figure 4C).

An important aspect of our model is that it was built without

requiring data on TF genomic binding. Thus, the links within

the model could reflect direct or indirect regulation. To esti-

mate the extent to which the identified gene regulatory rela-

tionships are mediated through direct TF binding, we re-

analyzed previously published ChIP-seq datasets that were

available for 8 out of the 14 tested TFs in HSPCs and/or Pro-

EBs (Table S5; STAR Methods). We found that 74% of the

links for which ChIP-seq data were available can be explained
(B) The activation strength of each TF for its target gene is plotted relative to its ab

regulatory parameter KXY are plotted for all activators X.

(C) The knockdowns of GATA1, GATA2, TAL1, and KLF1were induced separately

putative target genes was tested by qRT-PCR after 48 h. Expression is shown re

***p < 0.001.
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by direct TF binding to either the gene promoter or an associ-

ated enhancer.

In summary, we established the first GRN that integrates

quantitative changes in mRNA and protein abundance to model

erythroid lineage commitment. The model correctly recapitu-

lated known regulatory relationships and identified new links

while providing information on the relative contribution of

different TFs to the regulation of their targets. Most importantly,

incorporation of protein concentration (i.e., stoichiometry) re-

vealed quantitative imbalances in TFs’ cross-antagonistic rela-

tionships thatmay underlie hematopoietic progenitors’ instability

and drive cell lineage commitment.

Co-repressors Are Present in Large Excess while Co-
activators Are Limiting Compared to TFs in the Nucleus
The function of a TF is defined by its capacity to recruit co-fac-

tors (co-activators and/or co-repressors) to target genes (Reiter

et al., 2017). Thus, the function of a TF depends on the avail-

ability of co-factors in the nucleus. However, we do not know

whether co-factors are present in excess or in limiting amounts

compared to TFs. To address this, we used SRM to quantify

various types of co-factors, including co-activators such as his-

tone acetyltransferases (e.g., CBP, P300, KAT2A [also called

GCN5]), histone methyltransferases (e.g., MLL1, MLL3, MLL4,

SETD1B, DOT1L), histone demethylases (e.g., UTX) as well as

co-repressors such as histone deacetylases (e.g.,

HDAC1,2,3), chromatin remodeling enzymes (e.g., CHD4 [also

called Mi2b] of the NuRD complex), histone methyltransferases

(e.g., SETDB1), histone demethylases (e.g., LSD1), DNA meth-

yltransferase (e.g., DNMT1), and others (e.g., ETO2, TRIM28).

First, we found that co-repressors are present in excess

compared to TFs with for instance CHD4 being present at

>500,000 copies per nucleus versus 42,000 copies for the

most abundant TF GATA1 at day 10 (Figures 5A and 5C; Table

S4). Histone deacetylases are also highly abundant (e.g.,

HDAC1 >63,000 copies per nucleus at day 10). In contrast,

co-activators are surprisingly scarce with the histone acetyl-

transferase P300 representing less than 10% of the nuclear

amount of 10 TFs combined (Figure 5B) with 7,000 copies at

day 10. This surprising finding reveals a vast quantitative imbal-

ance in HDACs versus HATs in the nucleus (Figure 5C). Exam-

ining additional co-activators and co-repressors, we found that

this is a general trend with co-activators being on average 100

times less abundant than co-repressors, for all factors we have

examined (Figure 5C; Table S4) and at all time points during

hemato/erythroid differentiation (Figures 5D and S4). Strikingly,

these differences in abundance exist mostly at the protein (not

at the RNA) level (Figures 5D, 5E, and S4), suggesting a post-

transcriptional regulatory mechanism. Consistent with this, we

found that co-activators are more sensitive to cycloheximide

(CHX) treatment than co-repressors (Figure 6A), suggesting

that increased protein degradation could be responsible for
undance. For each gene Y in the GRN, the average protein abundance AX and

by lentiviral delivery of short hairpin RNA (shRNA) in cells at day 8. Expression of

lative to GAPDH as mean ± SEM. n = 3. Two-tailed t test: *p < 0.05; **p < 0.01;

http://grns.biotapestry.org/HumanErythropoiesisGRN/
http://grns.biotapestry.org/HumanErythropoiesisGRN/


Figure 5. Large Excess of Co-repressors and Limiting Amounts of Co-activators in the Nucleus

(A) Relative abundance of CHD4 protein compared to 10 erythroid TFs.

(B) Relative abundance of P300 protein compared to 10 erythroid TFs.

(C) Top panel: Quantitative imbalance between histone acetyltransferases (in red) and histone deacetylases (in blue). Bottom panel: Quantitative imbalance

between co-activators (in red) and co-repressors (in blue). Protein copy numbers are shown as mean of two replicates with error bars representing SEM.

(legend continued on next page)

ll
Resource

Molecular Cell 78, 960–974, June 4, 2020 969



Figure 6. The Nucleus Is a Highly Repressive

Environment with a Large Excess of Co-repres-

sors and Limiting Amounts of Unstable Co-ac-

tivators

(A) Western blot analyses of nuclear extracts from

erythroid cells (day 8) treated with cycloheximide

(CHX) to inhibit translation or a vehicle control. Mo-

lecular masses (in kilodaltons) are indicated on the left.

(B) Model of gene regulation in a highly repressive

nuclear environment. In this model, the same TFs are

able to interact with both coAs and coRs (Lambert

et al., 2018). However, due to the scarcity of coAs in

the nucleus, TFs must compete to recruit them, and

they do so by creating an environment that allows

multiple low-affinity interactions as observed on en-

hancers (Farley et al., 2015; Hahn, 2018). In contrast,

the high abundance of coRs increases their availabil-

ity, which facilitates their recruitment to genes even

when there are a small number of low-affinity in-

teractions with TFs.
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the scarcity of co-activators in the nucleus. Thus, our quantita-

tive measurements revealed that the nucleus is a highly repres-

sive environment with co-activators being exceedingly rare

compared to both co-repressors and TFs.

TFs do not work in isolation, but instead upon binding to DNA,

they form highly organized structures at enhancers to facilitate

the recruitment of co-activators (Catarino and Stark, 2018).

Thus, we asked whether co-activators are limiting or in excess

compared to active enhancers. To estimate the number of active

enhancers in erythroid cells, we performed assay for transpo-

sase-accessible chromatin with high-throughput sequencing

(ATAC-seq) (Buenrostro et al., 2013) followed by HINT-ATAC

(Li et al., 2019) at three time points to identify TFs’ footprints

within regions of open chromatin. These regions were then inter-

sected with predicted enhancers from the GeneHancer data-

base (Fishilevich et al., 2017). Since enhancers are characterized

by specific histone modifications (H3K27ac and H3K4me1), we

compared the number of identified enhancers with the number

of molecules of co-activator enzymes responsible for these his-

tone marks, including UTX (that demethylates H3K27), CBP and
(D) Left panel: Boxplots depicting protein abundances (in copy numbers) of transcription factors (TFs) (blac

(blue) at the indicated days. Right panel: Boxplots depicting mRNA abundances (in FPKM) of TFs, coAs,

and coRs, see Table S4. Two-tailed t test: n.s. (non-significant); *p < 0.05; **p < 0.01; ***p < 0.001; ****p

values of protein copy numbers or mRNA abundances.

(E) Average of protein/transcript ratio for TFs, coAs, and coRs at each day of differentiation.

(F) Estimated number of active enhancers compared to protein copy numbers of the indicated coAs in t

See also Figure S4.
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P300 (that acetylate H3K27), aswell asMLL3

andMLL4 (that monomethylate H3K4). Inter-

estingly, we found that the copy number of

histone-modifying enzymes is on the same

order of magnitude as the number of active

enhancers (Figure 5F), suggesting a model

whereby enhancer formation is dependent

on co-activator molecules availability in the

nucleus and enhancers must compete with
each other to recruit rare and unstable co-activators in a highly

repressive nuclear environment (Figure 6B).

DISCUSSION

In this study, by measuring absolute abundances of TFs during

the course of erythropoiesis, we uncovered major discrepancies

betweenmRNA and protein levels for master regulators of hema-

topoiesis. Integration of protein stoichiometry data with mRNA

measurements over time allowed us to establish a dynamic

GRN, which revealed quantitative imbalances in TFs’ cross-

antagonistic relationships that underlie lineage determination.

Furthermore, comparing the abundances of co-activators and

co-repressors in the nucleus, we made the unexpected discov-

ery that co-repressors are dramatically more abundant, which

has profound implications for understanding transcriptional

regulation.

A central question in biology is how TFs control gene expres-

sion programs to direct cell processes such as lineage commit-

ment. A prerequisite for understanding the general principles of
k), co-activators (coAs) (red) and co-repressors (coRs)

and coRs at the indicated days. For a list of TFs, coAs,

< 0.0001. Whiskers represent minimum and maximum

he nucleus at the indicated days.
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transcription is to define the key components (i.e., TFs and co-

factors) quantitatively in absolute terms. However, despite years

of studies, our knowledge of the copy number of TFs and co-fac-

tors in the nucleus is still limited. We also do not know the relative

abundances of co-activators, co-repressors, and TFs. Here,

through the use of targeted MS combined with spiked-in pro-

tein-specific standards, we offer an unprecedented view of the

transcriptional machinery in the nucleus, providing an abun-

dance scale for 103 major players in transcriptional regulation,

including TFs, chromatin-modifying enzymes, co-activators,

co-repressors, and subunits of the general transcriptional ma-

chinery at different stages of differentiation from HSPCs to

erythroid cells. In addition to providing a quantitative scale for

TFs in the nucleus, the protein data have changed our view on

key aspects of erythroid differentiation. For instance, based on

mRNA measurements, it was believed that the switch that oc-

curs at the ProEB stage between GATA2 and GATA1 genomic

binding to activate an erythroid gene program was due to

GATA1 becoming more abundant than GATA2 at this stage (Kat-

sumura et al., 2017). However, our protein data show that GATA1

is more abundant than GATA2 from the early stages of hemato-

poiesis. Thus, in contrast to the prevailing view, GATA2 is able to

bind to its target genes despite an excess of GATA1, and the

GATA2/GATA1 switch in genomic binding is likely to be medi-

ated by a decrease in GATA2 protein level rather than competi-

tion with GATA1.

Another major finding is that in the nucleus, co-repressors are

highly abundant (e.g., >500,000 molecules per nucleus for

CHD4), whereas co-activators such as P300 or CBP are compar-

atively very rare (<8,000 molecules per nucleus) with TFs being

present at intermediate levels. This is consistent with the concept

of ‘‘co-factor squelching’’ (also called ‘‘transcription interfer-

ence’’) (Meyer et al., 1989), which proposes that TFs compete

for a limited number of co-factors in the nucleus. The squelching

model was suggested 30 years ago based on reporter assays

(Meyer et al., 1989) but had remained controversial due to the

lack of data on TFs’ versus co-factors’ stoichiometry in cells

(Schmidt et al., 2016). Our finding that co-activators are limiting

compared to TFs in the nucleus provides strong support for a

model whereby TFs compete with each other to recruit a limiting

number of co-activators. Furthermore, this is compatible with

emerging models of enhancer function that involve multiple

weak interactions between co-activators, TFs, and their genomic

bindingsites toachieve specificity in gene regulation (Farley et al.,

2015; Hahn, 2018) (Figure 6B). In this regard, it is also interesting

that the number of co-activator molecules and active enhancers

are roughly equivalent in the nucleus, suggesting that the forma-

tion of active enhancers may depend on co-activator availability.

Although the squelchingmodel proposes passive repression as a

mechanism for genes to remain inactive due to a lack of available

co-activators, the high amounts of co-repressors we detected

indicate that the nucleus is a highly repressive environment with

the recruitment of co-repressors to target genes likely facilitated

by their high abundance (Figure 6B). Consistent with this, NuRD

has been shown to repress transcription of fetal b-like globin

genes in adult erythroid cells (Yu et al., 2019), and to suppress

transcriptional noise during lineage commitment (Burgold et al.,

2019). Basedon thesedata,wepropose that restricting the abun-
dance of co-activators in a highly repressive nuclear environment

is an important yet underappreciated mechanism for concerted

gene regulation during cellular processes such as cell fate deci-

sion, by ensuring only a limited number of genes can be ex-

pressed, and thus preventing high level co-expression of line-

age-specific genes in multipotent progenitors.

Cell fate decisions are thought to be mediated through

competition between LS-TFs that are co-expressed in multipo-

tent progenitors (Huang et al., 2007; Palii et al., 2019). These reg-

ulatory relationships are typically represented by GRNs wherein

LS-TFs inhibit each other within a stable progenitor state (Doré

and Crispino, 2011; Göttgens, 2015). However, recent single-

cell analyses at the RNA (Zheng et al., 2018) and protein (Palii

et al., 2019) levels have suggested that hematopoietic progeni-

tors do not exist as a stable state but instead are gradually differ-

entiating along lineage trajectories. Thus, there are uncertainties

about how well previous GRN models capture lineage commit-

ment. A major limitation of previous network models is that

they did not incorporate quantitative changes in TF protein levels

and instead used mRNA as a proxy for proteins. In contrast, we

have integrated complementary measures onmRNA and protein

abundances to build a temporal GRN of erythroid lineage

commitment. Our model is unique in that it is both dynamic, al-

lowing us to capture changes in regulatory relationships over

time, and quantitative as it measures the strength of each regu-

latory relationship and the relative contribution(s) of different TFs

to the regulation of their target genes (Figures 3 and 4; Video S1).

Notably, our model was able to accurately recapitulate the

known cross-antagonisms between LS-TFs in their correct

sequential order. Most importantly, the model revealed that

these cross-antagonisms are quantitatively imbalanced and

that these imbalances become more pronounced with time (Fig-

ures 3C and 3D). This suggests that lineage commitment can be

quantified by measuring the imbalance between LS-TFs’ cross-

antagonistic relationships. In summary, our GRN offers the first

protein-based quantitative view of dynamic changes in gene reg-

ulatory relationships that underlie erythroid lineage commitment

from HSPCs. We expect it will serve as a framework for integra-

tion of additional parameters such as other TFs/co-factors, post-

translational modifications, and/or genomic DNA binding data to

allow for a more comprehensive understanding of transcriptional

regulation during erythropoiesis.

Through the simultaneous measurement of RNA and proteins

at multiple time points during erythropoiesis, we reveal major

principles of transcriptional regulation that underlie lineage

commitment. It is likely that the regulatory principles established

here for erythropoiesis will be generally applicable to other

cell types.
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Hauri, S., Malmström, J., Yuan, J., and Hansson, J. (2017). Comprehensive
proteomic characterization of ontogenic changes in hematopoietic stem and

progenitor cells. Cell Rep. 21, 3285–3297.

Katsumura, K.R., and Bresnick, E.H.; GATA Factor Mechanisms Group (2017).

The GATA factor revolution in hematology. Blood 129, 2092–2102.

Keller, A., Nesvizhskii, A.I., Kolker, E., and Aebersold, R. (2002). Empirical sta-

tistical model to estimate the accuracy of peptide identifications made by MS/

MS and database search. Anal. Chem. 74, 5383–5392.

Khajuria, R.K., Munschauer, M., Ulirsch, J.C., Fiorini, C., Ludwig, L.S.,

McFarland, S.K., Abdulhay, N.J., Specht, H., Keshishian, H., Mani, D.R.,

et al. (2018). Ribosome levels selectively regulate translation and lineage

commitment in human hematopoiesis. Cell 173, 90–103.e19.

Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner

with low memory requirements. Nat. Methods 12, 357–360.

Kinross, K.M., Clark, A.J., Iazzolino, R.M., and Humbert, P.O. (2006). E2f4 reg-

ulates fetal erythropoiesis through the promotion of cellular proliferation. Blood

108, 886–895.

Kusebauch, U., Campbell, D.S., Deutsch, E.W., Chu, C.S., Spicer, D.A.,

Brusniak, M.Y., Slagel, J., Sun, Z., Stevens, J., Grimes, B., et al. (2016).

Human SRMAtlas: a resource of targeted assays to quantify the complete hu-

man proteome. Cell 166, 766–778.

Lambert, S.A., Jolma, A., Campitelli, L.F., Das, P.K., Yin, Y., Albu, M., Chen, X.,

Taipale, J., Hughes, T.R., and Weirauch, M.T. (2018). The human transcription

factors. Cell 175, 598–599.

Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with

Bowtie 2. Nat. Methods 9, 357–359.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and

memory-efficient alignment of short DNA sequences to the human genome.

Genome Biol. 10, R25.
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Beckman Coulter Cat#IM0483U; RRID:AB_2756301

PE conjugated Mouse Anti-Human CD235a (GPA)
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Unconjugated Anti-KAT2A (polyclonal) Laszlo Tora Cat#GCN5 (2676); RRID:AB_2616158

Unconjugated Anti-TRIM28 (polyclonal) LifeSpan Biosciences Cat#LS-C287177; RRID:AB_2811026

Unconjugated Anti-UTX (polyclonal) F. Jeffrey Dilworth Cat#UTX; RRID:AB_2811027

Unconjugated Anti-GATA1 (clone N6) Santa Cruz Biotechnology Cat#sc-265; RRID:AB_627663

Unconjugated Anti-TAL1 (clone BTL73) Millipore Cat#04-123; RRID:AB_1163509

Unconjugated Anti-TFIIHp89 (polyclonal S-19) Santa Cruz Biotechnology Cat#sc-293; RRID:AB_2262177

Unconjugated Anti-PU.1 (polyclonal T-21) Santa Cruz Biotechnology Cat#sc-352; RRID:AB_ 632289

Unconjugated Anti-TRIM28 (polyclonal) LifeSpan Cat#LS-C287177; RRID:AB_ 2827415

Unconjugated Anti-GFI1B (polyclonal D3G2) Cell Signaling Technology Cat#5849; RRID:AB_10835192

Unconjugated Anti-GST Tag (polyclonal) Millipore Cat#06-332 RRID:AB_310104

Bacterial and Virus Strains

BL21 competent E. coli New England Biolabs Cat#C2530H

Biological Samples

Umbilical cord blood Canadian Blood Services

(CBR-2014-001)

N/A

Chemicals, Peptides, and Recombinant Proteins

IMDM medium SIGMA Cat#I3390

Penicillin/streptomycin ThermoFisher Cat#15140122

L-glutamine GIBCO Cat#25030

Inositol SIGMA Cat#I5125

Folic acid SIGMA Cat#F7876

Monothioglycerol SIGMA Cat#M6145

Ferrous nitrate SIGMA Cat#8508

Ferrous sulfate SIGMA Cat#F8633

Albumin-insulin-transferrin (BIT) STEMCELL Technologies Cat#9500

Hydrocortisone (HC) SIGMA Cat#H2270

Stem cell factor (SCF) PeproTech Cat#300-07

Interleukin 3 (IL-3) PeproTech Cat#200-03

Erythropoietin (EPO) PeproTech Cat#100-64

LDS751 Molecular Probes Cat#L7585

Benzidine SIGMA Cat#B3503

Benzonase Millipore Cat#70746

May-Gr€unwald SIGMA Cat#63590
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Giemsa SIGMA Cat#48900

Isopropyl-b-D-thiogalactopyranoside (IPTG) ThermoFisher Cat#BP1755-1

Glutathione Sepharose 4 Fast Flow GE Healthcare Cat#17513201

Glutathione, reduced ThermoFisher Cat#AC120000010; CAS: 70-18-8

SimplyBlue SafeStain Life Technologies Cat#LC6060

Critical Commercial Assays

RosetteSep Human Cord Blood CD34 Pre-Enrichment

Cocktail

STEMCELL Technologies Cat#15631

EasySep Human CD34 Positive Selection Kit STEMCELL Technologies Cat#18096

iTRAQ Reagents Kit – 8 Plex SCIEX Cat#4393528

NEBNext Poly(A) mRNA Magnetic Isolation Module NEB Cat#E7490/L

KAPA Stranded RNA-seq Library Preparation Kit KAPABiosystems Cat#KR0934

NextSeq� 500/550 High Output Kit v2 Illumina Cat# TG-160-2005

1-Step Human Coupled IVT Kit - DNA Life Technologies Cat#88881

Deposited Data

The SRM Atlas Kusebauch et al., 2016 http://www.srmatlas.org/

The Erythroid SRM TF Atlas This paper Table S4

Uniprot human protein database 12-2015 release https://www.uniprot.org/proteomes/

UP000005640

GeneHancer (v4.4) Fishilevich et al., 2017 https://www.genecards.org/

RNA seq data This paper GEO: GSE118537

ATAC seq data This paper GEO: GSE137446

iTRAQ protein data This paper Table S1; ProteomeXchange via MassIVE:

PXD017490

SRM protein data This paper PASSEL: PASS01454

Original western blots for Figures S1B, S1E, S4, and 6A Mendeley Data https://dx.doi.org/10.17632/75vs43ydbf.1

Experimental Models: Cell Lines

MS-5 DSMZ Cat#ACC 441; RRID:CVCL_2128

HEK293T ATCC Cat#CRL-3216; RRID:CVCL_0063

Oligonucleotides

Primers for qRT-PCR N/A

GATA2 Forward 50-CTC CCA CCT TTT CGG CTT C-30 This paper N/A

GATA2 Reverse 50-CGT GGT GCT AGG GTC AGG A-30 This paper N/A

RUNX1 Forward 50-CCA ATA CCT GGG ATC CAT TGC-30 This paper N/A

RUNX1 Reverse 50-CTG GCA CGT CCA GGT GAA A-30 This paper N/A

TAL1 Forward 50-CGC CTG GCC ATG AAG TAT ATC-30 This paper N/A

TAL1 Reverse 50-AGG GTC CTT GCC AGT CTT-30 This paper N/A

FOXO3 Forward 50-CAG CCT GTC ACC TTC AGT AAG-30 This paper N/A

FOXO3 Reverse 50-TTT CAG TCA GCC CAT TCA-30 This paper N/A

GATA1 Forward 50-AGA CTT TGA AGA CAG AGC

GGC TGA-30
This paper N/A

GATA1 Reverse 50-TTC CAC GAA GCT TGG GAG

AGG AAT-30
This paper N/A

KLF1 Forward 50-GCG TTC CCA AAG ATC CAC

CCA AAT-30
This paper N/A

KLF1 Reverse 50-GGG TTT GCA CGA CAG TTT

GGA CAT-30
This paper N/A

PU.1/SPI1 Forward 50-AGA AGA TCC GCC TGT ACC A-30 This paper N/A

PU.1/SPI1 Reverse 50-CCA GAT GCT GTC CTT CAT-30 This paper N/A

GFI1B Forward 50-CGA CTC ACC CCC ATT CTA CAA-30 This paper N/A
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GFI1B Reverse 50-CGG TAG CTG TGG CCA TAG GT-30 This paper N/A

FLI1 Forward 50-CCA ACG AGA GGA GAG TCA-30 This paper N/A

FLI1 Reverse 50-CCA GCC ATT GCC TCA CAT G-30 This paper N/A

KLF3 Forward 50-CGAACCACAGAGGACAGA TTA TT-30 This paper N/A

KLF3 Reverse 50-GAC CGA AGG GTG ATT CTC TTG-30 This paper N/A

Recombinant DNA

pMD2.G envelope vector Didier Trono Cat#12259; RRID:Addgene_12259

psPAX2 packaging vector Didier Trono Cat#12260; RRID:Addgene_12260

GATA2 shRNA Lentivector Target a Abm Cat# i008537a

pLVUTHshGATA1-tTR-KRAB Cat#11650; RRID:Addgene_11650

pBLOCK-it6-DEST (sh Tal1) Palii et al., 2011b N/A

KLF1 shRNA Lentivector Target a Abm Cat#i011644a

pANT7-Trim28-cGST vector DNASU; Seiler et al., 2014 HsCD00631086

pANT7-Spi1-cGST vector DNASU; Seiler et al., 2014 HsCD00640831

pANT7-Gfi1b-cGST vector DNASU; Seiler et al., 2014 HsCD00831614

pGEX-4T vector GE Healthcare Cat# 28954549

Software and Algorithms

Hisat2 Kim et al., 2015 http://daehwankimlab.github.io/hisat2/

SAMtools Li et al., 2009 http://www.htslib.org/

featureCounts Liao et al., 2014 http://bioinf.wehi.edu.au/featureCounts/

DESeq2 Love et al., 2014 http://bioconductor.org/packages/release/

bioc/html/DESeq2.html

X!Tandem Craig and Beavis, 2004 https://www.thegpm.org/TANDEM/

Comet Eng et al., 2013 http://comet-ms.sourceforge.net

Peptide prophet Keller et al., 2002 http://peptideprophet.sourceforge.net/

iProphet Nesvizhskii et al., 2003 https://omictools.com/iprophet-tool

Protein prophet Shteynberg et al., 2011 http://proteinprophet.sourceforge.net/

Libra Pedrioli et al., 2006 http://tools.proteomecenter.org/wiki/

index.php?title=Software:Libra

Xpress Han et al., 2001 http://tools.proteomecenter.org/wiki/

index.php?title=Software:XPRESS

Skyline MacLean et al., 2010 https://skyline.ms/project/home/software/

Skyline/begin.view

Metascape Zhou et al., 2019 http://metascape.org/gp/index.html#/

main/step1

Trimmomatic Bolger et al., 2014 http://www.usadellab.org/

cms/?page=trimmomatic

bowtie-2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/

bowtie2/index.shtml

MACS2 Zhang et al., 2008 https://github.com/taoliu/MACS

deepTools2 Ramı́rez et al., 2016 https://deeptools.readthedocs.io/

en/develop/

Image Lab 5.2.1 Bio-Rad Laboratories https://www.bio-rad.com/en-us/product/

image-lab-software?ID=KRE6P5E8Z

Other

The Human Erythropoiesis TFs website: a web site

for mRNA and protein visualization and correlation

analyses during erythropoiesis

This paper http://apps.systemsbiology.net/app/

Transcription_Factor_Protein_RNA_

Erythropoiesis

The Gene Regulatory Network of Erythroid Commitment

in Biotapestry format

This paper http://grns.biotapestry.org/

HumanErythropoiesisGRN/
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Marjorie

Brand (mbrand@ohri.ca).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
All data generated during this study are available as follow:

The accession number for the RNA seq data reported in this paper is GEO: GSE118537

The accession number for the ATAC seq data reported in this paper is GEO: GSE137446

The accession number for the iTRAQ protein data reported in this paper is PXD017490 in the ProteomeXchange via MassIVE data-

base available at the following URL: https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp

The accession number for the SRM protein data reported in this paper is PASS01454 in the Peptide Atlas SRM Experiment Library

(PASSEL) database available at the following URL: https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/PASS_View?

identifier=PASS01454

The original western blots for Figures S1B, S1E, 6A, and S3 have been deposited in Mendeley.

https://dx.doi.org/10.17632/75vs43ydbf.1.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Hematopoietic stem/progenitor cells isolation
Umbilical cord blood from female andmale donors was obtained fromCanadian Blood Services ‘‘Cord Blood for Research program’’

(CBR-2014-001). CD34+ hematopoietic stem/progenitor cells were isolated as previously described (Palii et al., 2011a) with some

modifications. First, CD34+ cells were enriched from fresh cord blood by negative selection using the RosetteSep HumanCord Blood

CD34 Pre-Enrichment Cocktail (STEMCELL Technologies cat#15631), followed by Ficoll density gradient and CD34 positive selec-

tion using the EasySep Human CD34 Positive Selection Kit (STEMCELL Technologies cat#18096) according to the manufacturer’s

instructions. Purified cells were analyzed by FACS for CD34 expression using the PE Mouse Anti-Human CD34 antibody (BD Phar-

Mingen, cat# 555822) and either cryopreserved in 10%DMSOor cultured directly as described below. All procedures were approved

by the Ottawa Health Science Network Research Ethics Board (2007804-01H)

Human erythropoiesis ex vivo culture and cell harvest
Two biological replicates of the time-series were performed. CD34+ cells (63x106 cells for replicate 1 and 45x106 cells for replicate 2)

were differentiated toward the erythroid lineage using a 4-step protocol (Giarratana et al., 2005; Palii et al., 2011a). The first step (day

0 to day 11) consists of growing CD34+ cells in serum-free IMDMmedium supplemented with 1% penicillin/streptomycin, 4x10�3 M

L-glutamine, 40 ug/ml inositol, 10 ug/ml folic acid, 1.6x10�4 M monothioglycerol, 90 ng/ml ferrous nitrate, 900 ng/ml ferrous sulfate,

20%albumin-insulin-transferrin (BIT), also containing the following cytokines: 10�6M hydrocortisone (HC), 100 ng/ml stem cell factor

(SCF), 5 ng/ml interleukin 3 (IL-3) and 3 IU/ml erythropoietin (EPO) for 8 days followed by 3 days in supplemented IMDM medium

containing only SCF and EPO. For the second step (day 12 to day 14), cells were co-cultured on a layer of stromal MS-5 cells in

the supplemented IMDM medium containing only EPO. For the third step (day 15 to day 18), cells were co-cultured on a layer of

MS-5 cells in the supplemented IMDM medium with no cytokines. For the fourth step (day 19 to day 24), cells were co-cultured

on a layer of MS-5 cells in the supplemented IMDM medium in the presence of 10% fetal bovine serum. Every second day, cells

were counted and monitored for viability (trypan blue exclusion of dead cells), cell surface expression of CD34 (CD34-PE, BD Phar-

Mingen, cat# 555822), CD36 (CD36-PE, BD PharMingen, cat# 555455), CD71 (CD71-FITC, Beckman Coulter, cat# IM0483U), GPA

(CD235a-PE, BD PharMingen, cat# 555570) and LDS751 (Molecular Probes, cat# L7585) by FACS and hemoglobin production

(benzidine staining). Cells were harvested at the indicated intervals during the course of differentiation and cryopreserved in their

respective culture media supplemented with 10% DMSO.

Murine bonemarrow stromal MS-5 cells were obtained from DSMZ (cat#ACC 441; RRID:CVCL_2128) and cultured as follow. Cells

are seeded at 2 million cells/80 cm2 (for a 10 cm dish) in alpha-MEM medium containing ribo- and deoxyribonucleosides (StemCell

Technologies, cat# 36450) supplemented with 10% FBS, 2mM L-glutamine, 2 mM sodium pyruvate and 1% penicillin/streptomycin.

Confluent cultures are split 1:3 every third day using 0.05% Trypsin/EDTA

Human embryonic kidney 293T cells were obtained from ATCC (cat#CRL-3216; RRID:CVCL_0063) and cultured as follow. Cells

are seeded at 1 million cells/80 cm2 (for a 10 cm dish) in Dulbecco’s Modified Eagle’s Medium (DMEM)/High Glucose (HyClone,

cat# SH30243.01) supplemented with 10% FBS, and 1% penicillin/streptomycin. Confluent cultures are split 1:5 every two to three

days using 0.05% Trypsin/EDTA.

All cell lines are regularly tested for mycoplasma contamination and tested negative.
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METHOD DETAILS

Giemsa staining
Cells were harvested, cytospun and fixed in methanol for 5 min prior to staining with 1/20 diluted Giemsa solution (SIGMA cat#

GS500) for 15 min, followed by 3 washes of 5 min each in deionized water, according to the manufacturer’s instructions.

RNA extraction and high throughput sequencing
For each biological replicate, total RNA was isolated on days 0, 2, 4, 6, 7.5, 8, 8.5, 10, 10.5, 11, 11.5, 12, 14 and 16 of erythroid dif-

ferentiation using the RNeasy mini extraction kit (QIAGEN, cat# 74104), including a DNase I digestion step. After RNA extraction,

quality control was performed with RNA 6000 Nano kit (Agilent cat# 5067-1511). mRNA enrichment was performed using the NEB-

Next Poly(A) mRNAMagnetic Isolation Module (NEB cat#E7490S/L) and libraries were prepared using the KAPA Stranded RNA-seq

Library Preparation Kit (KAPABiosystems cat#KR0934) with two biological replicates per library. Paired-end sequencing was per-

formed on an Illumina HiSeq 2000.

RNA-seq analysis
For each biological replicate, fastq files were aligned to the human reference genome hg38 with RefSeq annotations using Hisat2

(Kim et al., 2015). The resulting .sam files were transformed into .bam files with SAMtools (Li et al., 2009). The reads were counted

using the featureCounts (Liao et al., 2014) function from the R package Rsubread, specifying the same .gtf file used to build the Hisat2

index and default parameters. Differentially expressed genes were identified with the R package DESeq2 (Love et al., 2014). Genes

with adjusted p value below 0.05 were considered statistically significant. For visualization the data was normalized to FPKMs. Prin-

cipal Component Analysis was done with the R function prcomp using the log(1+FPKM) transformed data.

Nuclear protein extraction and relative quantification using iTRAQ
Fifteen million cryopreserved cells at days 0, 2, 4, 6, 8, 10, 12 and 14 of erythroid differentiation were thawed and resuspended in

serum-free IMDM medium supplemented with 1% penicillin/streptomycin, 4x10�3 M L-glutamine, 40 ug/ml inositol, 10 ug/ml folic

acid, 1.6x10�4 M monothioglycerol, 90 ng/ml ferrous nitrate, 900 ng/ml ferrous sulfate, 20% albumin-insulin-transferrin (BIT). After

thawing, the cells were washed twice with ice-cold PBS, resuspended in ice-cold Swelling Buffer (10mM HEPES pH7.9, 1.5mM

MgCl2, 10mM KCl, 0.1% (v/v) NP-40, protease inhibitor cocktail) and incubated on ice for 30 min. During incubation, cells were vor-

texed every 5 min to allow cell lysis. Nuclei were then pelleted by centrifugation at 1,500 rpm (4�C) for 5 min, washed twice with ice-

cold PBS and resuspended in RIPA Buffer (50mM HEPES pH7.9, 1mM MgCl2, 150mM NaCl, 0.5% (w/v) Na deoxycholate, 1% (v/v)

NP40, 0.1% SDS) containing 50 ng/ml Benzonase (Millipore, cat# 70746) and protease inhibitor cocktail at room temperature (RT).

Samples were vortexed for 5 min at RT and incubated for 20 min at 37�C on a Thermomixer (14,000 rpm) followed by 5 min vortexing

at RT. Nuclear extracts were recovered by centrifugation at 14,000 rpm for 15min, snap frozen in liquid nitrogen and stored at�80�C.
Nuclear protein extracts were prepared from cells on days 0, 2, 4, 6, 8, 10, 12, and 14 of erythroid differentiation. Extracted protein

concentrations were measured using the bicinchoninic acid assay (BCA; Thermo Scientific). Equal protein amounts were reduced

with 5mM dithiothreitol, alkylated with 10mM iodoacetamide, and precipitated with chilled 100% acetone to remove detergent.

Precipitated proteins were resuspended in iTRAQ Dissolution Buffer (AB Sciex) and digested into solution with Lys-C for 3 h

(1:200 w:w, 37C; Thermo Scientific) followed by Trypsin overnight (1:50 w:w; 37C; Thermo Scientific). Volatile liquids were removed

by evaporation, and peptides were resuspended in iTRAQ Dissolution Buffer and labeled with 8-plex iTRAQ reagents (AB Sciex) for

2 h at room temperature with constant agitation. The labeling reaction was quenched with 1M Tris, pH 8.0, and samples were com-

bined and volatile liquid was evaporated. Labeled peptides were resuspended in 1% acetonitrile, acidified with formic acid, and pu-

rified using C18 reversed-phase chromatography (1cc 100mg cartridges; Waters). Purified peptides were separated into 24 fractions

using isoelectric focusing off-gel electrophoresis (Agilent), and ampholytes removed by tC18 reversed-phase chromatography

(100mg 96-well plate; Waters) followed by mixed cation exchange chromatography (30um uElution 96-well plate; Waters).

Purified peptides were separated by online nanoscale HPLC (EASY-nLC1000; Thermo Scientific) with a C18 reversed-phase

Picochip nanospray column pre-packed 10.5cm with ReproSil-Pur C18-AQ 3um 120A (New Objective) over an increasing 90 min

gradient of 5%–35% Buffer B (100% acetonitrile, 0.1% formic acid) at a flow rate of 300nl/min. Eluted peptides were analyzed

with a Q Exactive HF Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Scientific) operated in data dependent mode, with

the Top15 most intense peptides per MS1 survey scan selected for MS2 fragmentation by higher energy collisional dissociation

(HCD). MS1 scans were performed in the Orbitrap at a resolution of 60,000 at m/z 400, with an automatic gain control (AGC) target

of 3e6 ions and a maximum injection time of 20ms. MS2 scans were analyzed in the Orbitrap at a resolution of 15,000, with an AGC

target of 1e5 and a maximum injection time of 45ms. Due to the iTRAQ label, a fixed first mass of 100 m/z was used for MS2 scans,

along with a normalized collision energy of 30 and an isolation window of 1.2 m/z. Peptide match was not used, and dynamic exclu-

sionwas set to 30 s (+/� 15 ppm). Raw output data files were searched against theUniprot human protein database (12-2015 release)

using X!Tandem and Comet (Craig and Beavis, 2004; Eng et al., 2013) to identify peptide sequences. A reverse sequence database

was appended to assist in determining error. Resulting data were combined using iProphet, and probabilities for correct identification

were determined by Peptide prophet, iProphet, and Protein prophet (Keller et al., 2002; Nesvizhskii et al., 2003; Shteynberg et al.,

2011). iTRAQ quantification was performed using Libra (Pedrioli et al., 2006). See Table S1.
Molecular Cell 78, 960–974.e1–e11, June 4, 2020 e5



ll
Resource
iTRAQ data clustering analysis
iTRAQ data was clustered using k-means clustering with the R function kmeans, with centers = 8 and default parameters. Gene

Ontology (GO) analysis of the different clusters was done using Metascape (Zhou et al., 2019) with the option Express Analysis.

See Table S2.

Construction of an Erythroid protein database
Day 8 nuclear protein extracts (86 mg) were reduced with 5mM dithiothreitol, alkylated with 25mM iodoacetamide, and digested with

Lys-C for 3 h (1:200 w:w, 37C; Thermo Scientific) followed by Trypsin overnight (1:25 w:w, 37C; Thermo Scientific). Peptides were

acidified with formic acid, purified using C18 reversed-phase chromatography (1cc 100mg cartridges; Waters), and separated

into 24 fractions using isoelectric focusing off-gel electrophoresis (Agilent). Ampholytes were removed by tC18 reversed-phase chro-

matography (100mg 96-well plate; Waters) followed by mixed cation exchange chromatography (30um uElution 96-well plate;

Waters). Purified peptides were separated by online nanoscale HPLC (EASY-nLC II; Proxeon) with a C18 reversed-phase column

packed 25cm (Magic C18 AQ 5um 100A) over an increasing 60 min gradient of 5%–35% Buffer B (100% acetonitrile, 0.1% formic

acid) at a flow rate of 300nl/min. Eluted peptides were analyzed with an Orbitrap Elite mass spectrometer (Thermo Scientific) oper-

ated in data dependent mode, with the Top20 most intense peptides per MS1 survey scan selected for MS2 fragmentation by rapid

collision-induced dissociation (rCID) (Michalski et al., 2012). MS1 survey scans were performed in the Orbitrap at a resolution of

240,000 at m/z 400 with charge state rejection enabled, while rCID MS2 was performed in the dual linear ion trap with a minimum

signal of 1000. Dynamic exclusion was set to 15 s (+/� 10 ppm). Raw output data files were searched against the Uniprot human

database (03-2015 release) using X!Tandem and Comet (Craig and Beavis, 2004; Eng et al., 2013) to identify peptide sequences.

A reverse sequence database was appended to assist in determining error. Resulting data were combined using iProphet, and prob-

abilities for correct identification were determined by Peptide prophet, iProphet, and Protein prophet (Keller et al., 2002; Nesvizhskii

et al., 2003; Shteynberg et al., 2011). Xpress was used to determine the summed peak area for each peptide (Han et al., 2001).

Construction of the Erythroid SRM TF Atlas
We created a list of 168 TFs with known and/or expected roles in transcriptional regulation during erythropoiesis. Proteotypic, fully

tryptic peptides with the highest summed MS1 peak areas were selected from the erythroid protein database for all proteins of in-

terest. In addition, selected peptides were a minimum of 7 amino acids in length and lacked features that may be incompatible with

SRM analysis, namely ragged ends or missed cleavages. Where possible, Cys-containing peptides, peptides containing potentially

modified residues (e.g., Met, Ser, Thr, Tyr, N-terminal Gln, Asn-Gly, Gln-Gly) and sequences that could affect trypsin digestion effi-

ciency or peptide stability were also avoided. For proteins not found in our database, or to supplement our identified peptides, the

SRM Atlas (Kusebauch et al., 2016) was used with a preference for peptides validated on an Agilent triple quadrupole mass spec-

trometer. In the few instances where a protein of interest was not present in our erythroid protein database and there were no cor-

responding peptides in the SRM Atlas, we relied upon Peptide Atlas (Deutsch et al., 2015), or prediction software (Fusaro et al.,

2009)). In sum, we derived 5%of peptides using these approaches: 3% fromPeptide Atlas, and 2% fromESP Predictor. SIL peptides

(Lys-[13C6, 15N2] or Arg-[13C6, 15N4]) were synthesized for all proteins (716 peptides; PEPotec). Transitions and collision energy

values were imported from the SRMAtlas, when available, or derived empirically (MacLean et al., 2010). Next we determinedwhich of

these peptides displayed the highest interference-free signal intensities in solvent and when added to erythroid cell extracts. In addi-

tion, the peptides were screened for their ability to produce a linear dose response. After screening 716 SIL peptides corresponding

to 168 TFs, we were left with 411 peptides corresponding to 150 TFs (3-4 transitions per peptide and 1-4 peptides per protein) that

satisfied these requirements (Table S3). These SIL peptides were used as standards for confident peptide identification during SRM

and to optimize SRM assays. The concentration of SIL peptides used in the final time course measurements was matched to that

detected in day 8-12 erythroid nuclear extracts.

Nuclear protein extraction and sample preparation for SRM analyses
Fifteen million cryopreserved cells at days 0, 2, 4, 6, 7.5, 8, 8.5, 10, 10.5, 11, 11.5, 12, and 14 of erythroid differentiation were thawed

and washed using IMDM supplemented medium. Cells were then washed in ice-cold PBS buffer, resuspended in ice-cold Swelling

Buffer (10 mM HEPES pH7.9; 1.5 mM MgCl2; 10 mM KCl; 0.1% (v/v) NP40; protease inhibitor cocktail) and incubated on ice for

30 min. During incubation, cells were vortexed every 5 min to allow cell lysis. Nuclei were then pelleted by centrifugation for 5 min

at 1,500 rpm (4�C) and resuspended in 1 vol. of 37�C pre-heated Extraction Buffer 1 (50 mM HEPES pH7.9; 1 mM MgCl2;

150 mM NaCl; 0.5% Na deoxycholate; 50 ng/ml Benzonase Millipore, cat# 70746; protease inhibitor cocktail) prior to incubation

at 37�C on a Thermomixer (14,000 rpm) for 15 min. Proteins were extracted first by 6 passages through a 27 ½ gauge needle prior

to addition of 1 vol. of 37�Cpre-heated Extraction Buffer 2 (50mMHEPES pH7.9; 150mMNaCl; 9.5%Na deoxycholate; 1mMEDTA;

protease inhibitor cocktail). Themixture was heated at 70�C for 5min and proteins were extracted further by 6 passages through a 27

½ gauge needle prior to incubation at 40�C on a Thermomixer (14,000 rpm) for 15 min. Nuclear extracts were recovered by centri-

fugation at 13,000 rpm for 15 min and snap frozen. Extracted protein concentrations were measured using the BCA assay (Thermo

Scientific). Equal protein amounts were denatured by boiling at 100�C for 4 min, cooled and reduced with 5mM dithiothreitol, alky-

lated with 25mM iodoacetamide, and digested with Lys-C for 3 h (1:200 w:w, 37C; Thermo Scientific). Samples were diluted to

reduce sodium deoxycholate concentration to below 1%, and digested with Trypsin overnight (1:25 w:w, 37C; Thermo Scientific).
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Concentration-matched isotopically heavy peptide standards were added to erythroid peptide samples after overnight digest. To

remove sodiumdeoxycholate and prepare peptides for purification, sampleswere acidifiedwith an equal volume of cold 1% trifluoro-

acetic acid. Acidified supernatants were subsequently purified by mixed cation exchange chromatography (30um uElution 96-well

plate; Waters).

Sample Processing for SRM
SRM was performed on an Agilent 6490 triple quadrupole mass spectrometer, equipped with a chip cube interface. Peptides were

separated by online HPLC (1260 Infinity; Agilent) with a reversed-phase microfluidics HPLC chip (160nL trap; Agilent) over an

increasing 60min gradient of 3%–25% acetonitrile. Optimized transitions were acquired in dynamic MRMmode, with a 5 min reten-

tion timewindow, usingMS1wide andMS2 unit resolutions. Collision cell accelerator voltage was set to 5V, and cycle times were set

to yield a minimum dwell time of 12ms. Raw data was processed using Skyline (MacLean et al., 2010) and peaks were manually veri-

fied. Light-to-heavy ratios were calculated from peak area values. Only measurements determined to be within the linear range of

quantification for the mass spectrometer were used for subsequent analyses.

Technical considerations regarding peptide quantification
In this studywe used SIL peptides and SID-SRM to quantify target proteins. A limitation of peptide-based protein quantification is that

it may not reflect the variability of abundances for a given protein. This can result from the presence of isoforms or post translationally

modified forms of the protein, and/or inefficient protein digestion during sample processing. This issue is particularly relevant when

only a single peptide is used for quantification. One way to assess the variability of protein abundance would be to use recombinant,

isotopically labeled, full length protein standards, instead of synthetic peptides, for each target protein (Simicevic et al., 2013).

These protein standards would be quantified, and spiked-into the biological samples prior to protein digestion, thus controlling

for potential inaccuracies in quantification due to inefficient digestion. This approach provides the opportunity to use all detectable,

interference-free proteotypic peptides for protein quantification which could reveal variability in protein abundances. The main

challenges of implementing this approach are the production of the recombinant protein standards, the development of the SRM

assays for all detectable peptides, and the increased sample requirement and instrument time needed to acquire the data.

Quantification of proteins using western blots
For orthogonal quantification of TRIM28, PU.1, and GFI1B, we used purified GST to quantify GST-tagged protein standards corre-

sponding to these TFs. We then used the protein standards to quantify the endogenous transcription factors, as described below.

Recombinant Glutathione S-Transferase (GST) protein was expressed from the pGEX-4T vector transformed into E. coliBL21 cells

(GEHealthcare). Following overnight growth, protein expression was induced with 2mM Isopropyl-b-D-thiogalactopyranoside (IPTG)

for 2 h at 37C. Cells were lysed with 1% Triton X-100, sonicated, and incubated with glutathione-Sepharose beads (GE Healthcare).

Captured protein was washed 3 times with PBS and eluted with 10mM glutathione. Glutathione was subsequently removed by dial-

ysis against 50mM Tris pH 8 overnight. Purified GST protein was separated by SDS-PAGE and visualized by SimplyBlue SafeStain

(Life Technologies) to ensure a single product of correct size. GST protein was quantified in triplicate using the BCA assay.

Expression clones for GST-tagged versions of TRIM28, PU.1, and GFI1B were obtained from DNASU (Seiler et al., 2014) and

in vitro transcribed/translated using the 1-Step Human Coupled IVT kit (Life Technologies) according to manufacturer’s protocol.

These proteins were then visualized by western blotting together with serial dilutions of purified GST protein, and quantified by image

analysis (Image Lab; Bio-Rad). The concentration of TFs in erythroid nuclear extracts was determined by comparison to the quan-

tified protein standards by western blotting and image analysis.

Gene Regulatory Network modeling
For a core set of factors (ELF1, ERG, FLI1, GATA1, GATA2, GFI1B, KLF1, NFE2, RUNX1, TAL1, SPI1), possible regulatory links were

obtained from the literature (Doré and Crispino, 2011; Göttgens, 2015; Sive and Göttgens, 2014). For three genes (E2F2, HXB4,

KLF3), literature evidence was insufficient to suggest regulatory links. For each of these three genes, we computed correlations be-

tween the RNA expression of the gene and the protein expression of all other genes in the network. The three other genes with highest

correlation were posited to be possible activators, and the gene with most negative correlation was posited to be a possible

repressor. This network of possible activators and repressors was further refined by fitting ordinary differential equation models

to the quantitative expression data.

Given a gene X, let x denote our modeled (or predicted) RNA expression of gene X, in units of FPKM. Let Ai(t) denote the observed

protein expression of the ith activator of gene X, and Rj(t) the observed protein expression of the jth repressor of gene X, both in units of

fmol/mg. We model the RNA transcription of X as

dx

dt
= /

P½nA �
i = 1kiAi

1+
PnR

j = 1knA + jRj

� lx

where ki and lare constants to be determined, nA is the number of activators considered for X and nR is the number of repressors

considered for X. Given an initial condition, x(0), values for the Ai and Ri as a function of time, and values for the regulatory and decay
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parameters, the above ordinary differential equation (ODE) can be solved numerically over any finite time interval, producing pre-

dicted values x(t, k, l). We used a Runge-Kutta 7(8) method to calculate such trajectories.

The values for for Ai and Rj as a function of time are obtained by interpolation from the observed SRM (protein) values, using a cubic

spline smoothing from the GSL libraries (Galassi, 2003).

Given also observed RNA expression values for gene X, O(ti) at observation times t1, t2,., tm, agreement between predicted and

observed expression values can be quantified using the objective function

GðxÞ =
Xm

i = 1

ðOðtiÞ � xðti; k; lÞÞ2

To find regulatory and decay parameters, we sought to minimize the objective function, subject to the constraints that all parameters

need to be positive and decay rate has to be larger than 16.6 day-1.

The minimum of the objective function was computed using a Simplex method from the GSL libraries. To explore the parameter

space we choose random initial parameters between 0 and 500 for the k’s, and between 16.6 day-1 and 500 day-1 for the lwith stop

conditions either error below 1e-04 or a maximum of 2000 iterations. With a total of 128 random initial conditions. Out of the 128 it-

erations, the parameter set that gives the smallest values in the objective function were selected.

Gene Regulatory Network display
For activators, the transparency score of the link representing Ai activating X at time t is

KiAiðtÞ
maxi;tKiAiðtÞ

Links with transparency score below 0.1 at a certain time are not displayed. Links with transparency scores between 0.1 and 1 are

increasingly opaque, and links with scores greater or equal to 1 are fully opaque. For repressors, the transparency score of the link

representing Ri repressing X is log2(1+KiRi). The thickness of a link from a regulator (activator Ai or repressor Ri) to gene X is propor-

tional to log(1+Ki). See Figure 3.

Intersection of GRN putative links with published ChIP-seq data
Published ChIP-seq data for ERG (GSM1097879), FLI1 (GSM1097880), GATA1 (GSM1278240, GSM1067274), GATA2

(GSM1097883), KLF1 (GSM2575041-GSM2575049, GSM1067275), PU.1 (GSM1816089, GSM1816090), RUNX1 (GSM1816092,

GSM1097884, GSM1816091) and TAL1 (GSM1278241, GSM1097881, GSM1816083) corresponding to CD34+ HSPC (Day 0-2) or

ProEB (Day 10) stages (Beck et al., 2013; Huang et al., 2016; Norton et al., 2017; Pinello et al., 2014) were downloaded from

NCBI GEO and analyzed as follow. Raw fastq data was trimmed for low quality bases using trimmomatic (version 0.38) (Bolger

et al., 2014), and mapped to the human genome (hg38) using bowtie-2 (Langmead and Salzberg, 2012). Aligned reads were filtered

for multiple mapping using a mapping quality filter (Q20) and the filtered alignments were sorted (using samtools version 1.9 (Li et al.,

2009)) and used for calling peaks. Peaks were called using MACS2 (version 2.1.2) (Zhang et al., 2008), with a peak enrichment cut-off

filter of p = 0.05. The peaks were filtered against ENCODE blacklist (Amemiya et al., 2019) for human genome using bedtools v2.27.1.

For each sample, an appropriate Input sample from the same stage of development was used as a control. Genome coverage files

were created using deepTools2 suite (bamCoverage) (Ramı́rez et al., 2016). The identified ChIP-seq peaks were overlapped with

GeneHancer (v4.4) (Fishilevich et al., 2017) elements (promoters and enhancers) using bedtools. This filtered list was then intersected

with putative links from theGRNmodel at day0 or day2 (HSPCs) or day 10 (ProEB) to identify possible direct interactions between TFs

and target genes (TGs). Based on this data, we classified TF–TG pairs as either ‘‘interacting’’ or ‘‘not interacting’’ and calculated the

percentage of regulatory links that could be explained by direct TF binding. See Table S5.

Lentivirus preparation and infection
Lentiviral particles expressing shRNA sequences against GATA2 (50- CCAGACGAGGTGGACGTCTTCTTCAATCA-30), GATA1 (50- GA

TCCCCGAAGCGCCTGATTGTCAGTTTCAAGAGAACTGACAATCAGGCGCTTCTTTTTGGAAA-30), TAL1 (50- CTTACTCTAGGAGGC

GGAC-30), and KLF1 (50- CCGGACACACAGGATGACTTCCTCAAGTG �30) were prepared as previously described (Palii et al.,

2011a). Specifically, HEK293T cells were transfected with the pMD2.G envelope vector (Addgene #12259), the psPAX2 packaging

vector (Addgene, #12260) and one of the following shRNA expression lentiviral vectors: GATA2 shRNA Lentivector Target a

(Abm #i008537a), pLVUTHshGATA1-tTR-KRAB (Addgene #11650), pBLOCK-it6-DEST (sh Tal1) (Palii et al., 2011b) or KLF1 shRNA

Lentivector Target a (Abm #i011644a), using calcium phosphate precipitation. Lentiviral particles were harvested, concentrated by

ultracentrifugation (50,000 g for 2h) and used to infect cells at the day 8 time-point with a MOI of 20. Lentiviral infection was repeated

24h later in the same conditions. Cells were harvested 24h after the last infection and used for RNA extraction.

ATACseq, HINT-ATAC and estimation of the number of active enhancers
ATAC-seq was performed as previously described (Buenrostro et al., 2013; Hay et al., 2016) for cells at days 8, 10 and 12. Briefly,

75000 cells per technical replicate per sample per time point were lysed in cold lysis buffer, nuclear pellets were obtained after
e8 Molecular Cell 78, 960–974.e1–e11, June 4, 2020



ll
Resource
10min centrifugation at 4�C at 500G and resuspended in 50ul of tagmentation mix (FC-121-1030, Illumina), then incubated for 30min

at 37�C. DNAwas purified using theQIAGENMinElute columns (28004, QIAGEN). Tagmented DNAwas indexedwith custom primers

using NEBNext High-Fidelity 2x PCRMaster Mix (M0541S, NEB) and purified with QIAGEN PCRCleanup Kit (28104, QIAGEN). Sam-

ples were multiplexed sequenced on a next generation sequencing platform using the NextSeq� 500/550 High Output Kit v2 (75 cy-

cles; FC-404-2005, Illumina) using paired-end reads. For data analysis, the fastq data was mapped onto the human genome (hg38)

using bowtie1.0 (Langmead et al., 2009) with the following parameters: –chunkmb 256 –phred-quals 33 –m 2 –best –strata –maxins

400. The mapped bam files were used to call narrow peaks using MACS2 with the version 2.1.2 docker image of macs

https://hub.docker.com/r/fooliu/macs2

In preparation for running HINT-ATAC, all peaks which mapped to non-canonical chromosomes (chr1-22, X, Y, M) were eliminated

(‘‘cleaned’’) and a bam index was built for each bam file using samtools version 1.8. HINT was then run from the regulatory genomics

toolkit, version 0.12.3 (http://www.regulatory-genomics.org/hint/introduction/) on the indexed bam file, and the cleaned peaks file

rgt-hint footprinting–atac-seq–organism = hg38 $(BAM) $(PEAKS)

Putative enhancer and promoter regions from GeneHancer 4.1.1. were identified for all tissues, and the Bioconductor Genomi-

cRanges package was used to calculate the intersection of macs2 narrowpeaks and hint-called ATAC-seq footprints with the

sets of enhancers. See Figure 5F.

Cycloheximide treatment and nuclear protein extraction
Erythroid cells at day 8were treated with 1 mg/mL of cycloheximide or DMSO vehicle control for 3h. Cells were washed twice with ice-

cold PBS, resuspended in ice-cold Swelling Buffer (10mM HEPES pH7.9, 1.5mMMgCl2, 10mM KCl, 0.1% (v/v) NP-40, protease in-

hibitor cocktail) and incubated on ice for 30 min. During incubation, cells were vortexed every 5 min to allow cell lysis. Nuclei were

then pelleted by centrifugation at 1,500 rpm (4�C) for 5 min, washed twice with ice-cold PBS and resuspended in RIPA Buffer (50mM

HEPES pH7.9, 1mM MgCl2, 150mM NaCl, 0.5% (w/v) Na deoxycholate, 1% (v/v) NP40, 0.1% SDS) containing 50 ng/ml Benzonase

(Millipore, cat# 70746) and protease inhibitor cocktail at room temperature (RT). Samples were vortexed for 5 min at RT and incu-

bated for 20 min at 37�C on a Thermomixer (14,000 rpm) followed by 5 min vortexing at RT. Nuclear extracts were recovered by

centrifugation at 14,000 rpm for 15 min, snap frozen in liquid nitrogen and stored at �80�C before western blot analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Absolute quantification of transcription factors by SRM
Absolute quantification was achieved in two ways: The first approach (71 proteins) is based on stable isotope dilution (SID) in which

peptide abundance is determined by comparison of selected transition peak areas for each peptide to those of its corresponding SIL

peptide. The second approach (34 proteins) is a label free method in which SID is used to determine the concentration of a set of 17

‘‘anchor’’ proteins, and standard curves based on transition peak areas from the two highest intensity peptides per anchor protein

and their concentrations are then used to estimate the concentrations of the target proteins (Ludwig et al., 2012).

For SID, isotopically light internal standard (IS) peptides (Gerber et al., 2003) were used to quantify our SIL standard peptides. This

approach enabled a significant time, cost and resource savings versus using isotopically heavy IS peptides for assay development

and direct quantification in the biological matrix. Peptides that showed the highest interference-free intensity were selected for com-

mercial synthesis (AQUA; Thermo Scientific). IS peptides were > 97% pure and were quantified by amino acid analysis. For SRM

quantification, the peak areas for the two most intense, interference-free transitions were summed together. Additional transitions

were used to confirm correct peak identification. Dose-response curves were generated for each IS peptide at abundances ranging

from 10 amol to 500 fmol (Data S1B). Quantification of the SIL peptides was achieved by measuring transition intensities from serial

dilutions of the peptides and then plotting the corrected peak areas onto the corresponding IS dose-response curve. The technical

variability as assessed by repeated quantifications of these SIL peptides is reflected by a mean coefficient of variation (CV) of 0.224

(Data S1D). The light-to-heavy ratios calculated for the erythroid differentiation time course were used to convert these SIL standard

abundancemeasurements into endogenous protein abundances. Peptide-based protein abundanceswere averaged in caseswhere

more than 1 peptide/protein was quantified.

For label free absolute quantification, the following criteria were used to select ‘‘anchor’’ proteins for the standard curves: (i) IS

dose-response regression line was linear between 0.1-500 fmol with an R2 > 0.98; or (ii) IS dose-response regression line was linear

between 1-500 fmol with an R2 > 0.98 and a slope > 0.8; or (iii) IS dose-response regression line was linear between 1-500 fmol with

an R2 > 0.95 and the peptide was included based on (i) or (ii) in another replicate. All peptides satisfying at least one of these criteria

were weighted equally when preparing the standard curve. Peak areas were calculated by summing the two most intense interfer-

ence-free transitions per peptide, and averaging these values for the two highest intensity peptides per protein. Linear regressionwas

used to fit a standard curve to the above values, and to estimate the unknown concentrations of endogenous proteins using their

measured transition peak area values (Data S1C). The limits of quantification (LOQ) for anchor proteins is provided in Table S4.

SRMmeasurements obtained as described above produced biological duplicate values in units of fmol/mg of protein for each pro-

tein at each time point. Values outside the linear range of quantification were removed. Zeros were added to indicate select measure-

ments that did not produce a detectable signal in themass spectrometer. This was based on the assumption that neighboring values

would either decrease as they approached the missed measurement, or increase from the missed measurement as the time course
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progressed. In addition, the expression trend of the replicate biological measurement was used to inform this decision. The two rep-

licates were combined by the following steps, to produce a single abundance value for each gene at each time point. First, if both

replicates had a valid measurement, the two were averaged. If only one replicate had a valid measurement, it alone was taken as

the representative value. If neither replicate had a valid measurement, the value was marked as missing. Second, missing values

were filled in by linear interpolation where possible. For each missing value (say on day y), we sought the latest non-missing value

prior (say on day x) and the earliest non-missing value later (say on day z). If such days could be found, then the abundance at

day x was filled in with (z-y)/(z-x) times the abundance at day x, plus (y-x)/(z-x) times the abundance at day z. This interpolation

rule was not applied to genes ETO2, MLL1 and SPT16, as visual inspection suggested there were too many missing values and/

or not clear enough of a trend in abundance for interpolation to be meaningful. This left only one gene, BACH1, with a missing value

at our final time point, which we filled in as zero consistent with BACH1’s general trend toward decreasing expression. See Table S4.

Some analyses, such as the GRN modeling (Figure 3), used these numbers. For other analyses (Figures 2, 4, and 5; Data S2), we

wanted to express protein abundance in units of protein copy number per nucleus To obtain these numbers, we multiplied by

4420.25799, which comes from the following considerations: (1) There are 6.022140857e+8 molecules per fmol. (2) Across all sam-

ples, we extracted an average of 7.3426 mg protein per million nuclei. By comparing quantifications of the same proteins at the same

time points between our two biological replicates, we observe a mean CV of 0.3106 and a Pearson correlation coefficient of 0.86

between log-transformed abundances (Data S1E and S1F).

Comparison of protein abundances for TFs, coAs and coRs
For this analysis, TFs were defined as proteins that bind to DNA in a sequence-specific manner and regulate transcription. CoAs and

coRswere defined in the strictest sense as proteins that have been shown to be recruited to genomic locations by TFs and to respec-

tively activate or repress transcription. Proteins that have been associated to both coactivator and corepressor roles depending on

the cellular and/or genomic context (e.g., SWI/SNF complex subunits) were excluded from the list. Selection of coAs and coRs was

further guided by the following considerations. When possible, we selected proteins that have been extensively studied, possess

well-defined enzymatic activities, and contain peptides that produce strong signals during mass spectrometry analysis. Notably,

our list of coAs is representative of all classes of transcriptional coactivators in the nucleus (i.e., distal factors acting through en-

hancers, proximal factors acting on promoters and elongation factors). These include:

1. coAs involved inmediating the formation of active enhancers: theH3K27 demethylase UTX, theH3K27 acetyltransferases CBP

and P300 and the H3K4 monomethyltransferases MLL3 and MLL4.

2. coAs involved in transcriptional activation at the promoter or in the gene body: the histone acetyltransferases CBP, P300 and

KAT2A that mediate histone acetylation at promoters – a hallmark of active genes, SETD1B and MLL1 that mediates H3K4

trimethylation – another hallmark of active genes, the MED1 subunit of the Mediator complex known to increase RNA polymer-

ase II recruitment at promoters and the H3K79 methyltransferase DOT1L involved in gene activation by promoting transcrip-

tional elongation.

CoRs include chromatin remodeling enzymes of the corepressor complex NuRD (CHD3, CHD4), histone deacetylases (HDAC1, 2

and 3), the DNA methyltransferase DNMT1, subunits of the SIN3 corepressor complex, the well-known transcriptional corepressor

TRIM28, and other well-defined corepressors. See Table S3 for a complete list of coAs and coRs.

For each day, the log10 transformed values of TFs (n = 43), coAs (n = 10) and coRs (n = 20) were averaged and plotted usingGraph-

pad (version 7.0d). We verified that the data has a Gaussian distribution. Unpaired t tests with two-tailed p value were performed

using Graphpad (version 7.0d) to assess statistical significance. See the legends of Figures 5D and S4.

Correlation mRNA between different days
Correlation heatmap values were computed with the cor R function using Pearson correlation, computing the correlation over all

genes on FPKM normalized data. See Figure 1E.

Correlation proteins between different days
Correlation heatmap values were computed with the cor R function using Pearson correlation, computing the correlation over all

genes on protein copy numbers. See Figure S2B.

iTRAQ versus SRM correlation analyses
Correlation analysis across time points was performed by computing the Pearson correlation of iTRAQ relative protein abundance

and SRM absolute protein abundance (copy number) for each gene. The histogram of the correlation was done with the R function

hist with breaks = 20. See Figure S2C.

Protein versus mRNA correlation analyses
Correlation analysis across genes was performed by computing the Spearman correlation of the mRNA abundance (FPKM) and pro-

tein abundance (copy number) of all genes at each time point. See Figure 2A. Correlation analysis over time was performed by
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computing the Pearson correlation of the mRNA abundance (FPKM) over time with the respective protein abundance (copy number)

for each gene over time. See Figure 2B.

ADDITIONAL RESOURCES

To facilitate mRNA and protein visualization and correlation analyses during erythropoiesis, we created the Human Erythropoiesis

TFs website accessible at the following location:

http://apps.systemsbiology.net/app/Transcription_Factor_Protein_RNA_Erythropoiesis

This website offers two functionalities. First, the user can visualize temporal changes in mRNA and protein abundances simulta-

neously during erythropoiesis. A smoothing option is also offered. Second, the user can search for novel correlations (positive and

negative Pearson correlations) of specific proteins during erythropoiesis.

To facilitate further exploration of theGeneRegulatory Network of Erythroid Commitment (Figure 3), we created an interactive web-

site in BioTapestry format (Paquette et al., 2016) accessible at the following link:

http://grns.biotapestry.org/HumanErythropoiesisGRN/
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Figure S1. (Related to Figure 1) RNA and Protein Quantification of Transcription 

Factors and Co-factors during Ex Vivo Human Erythropoiesis.  



(A) Schematic of sample collection at different time-points followed by analyses at 

the RNA and protein levels. Erythroid differentiation was induced ex vivo from cord 

blood-derived CD34+ HSPCs. Giemsa-stained cells are shown at representative 

days (magnification 40x). 

(B) Western blot analysis of GATA1 protein at the indicated days during ex vivo 

erythropoiesis. Molecular masses (in kDa) are indicated on the left. 

(C) Cell amplification during ex vivo erythropoiesis. 

(D) Principal component analysis (PCA) monitoring gene expression changes over 

time as measured by RNAseq. 

(E) Western blot analysis of GATA1, TAL1 and TFIIHp89 proteins at the indicated 

days during ex vivo erythropoiesis. Molecular masses (in kDa) are indicated on the 

left. 

(F) k-means clustering analysis of iTRAQ data at different time-points. The top 

enriched Gene Ontology terms for each cluster are indicated. 

  



 

Figure S2. (Related to Figure 1) RNA and Protein Quantification of Transcription 

Factors and Co-factors during Ex Vivo Human Erythropoiesis.  



(A) k-means clustering analysis of normalized mRNA expression (measured by 

RNA-seq) at the indicated days. 

(B) Correlation matrix of normalized protein expression (measured by SRM) at the 

indicated days. 

(C) Correlation of protein changes over time as measured by iTRAQ and SRM. 

Positive correlations are in green. Negative correlations are in orange. 

  



          Figure S3 

 

 

Figure S3. (Related to Figure 1) Validation of SRM-based protein quantification 

with quantitative Western blots. 

(A) Comparison of protein quantification using SRM and Western blot (WB) for 

the indicated proteins. Potential reasons for the quantitative difference between 

the SRM and western blotting abundances for GFI1B could be the presence of 



isoforms or post translationally modified forms of GFI1B, and/or inefficient trypsin 

digestion. 

(B) Left: Western blot analysis of recombinant GST-tagged TRIM28 (TRIM28-

GST) and endogenous TRIM28 in day 11 erythroid nuclear extract. Molecular 

masses (in kDa) are indicated on the left. Right: Standard curve used to quantify 

the amount of TRIM28 protein. 

(C) Left: Western blot analysis of recombinant GST-tagged PU.1 (PU.1-GST) and 

endogenous PU.1 in day 11 erythroid nuclear extract. Molecular masses (in kDa) 

are indicated on the left. Right: Standard curve used to quantify the amount of PU.1 

protein. 

(D) Left: Western blot analysis of recombinant GST-tagged GFI1B (GFI1B-GST) 

and endogenous GFI1B in day 11 erythroid nuclear extract. Molecular masses (in 

kDa) are indicated on the left. Right: Standard curve used to quantify the amount 

of GFI1B protein.  

  



          Figure S4 

 

 

 

Figure S4. (Related to Figure 5) Co-activators are Less Abundant than Co-

Repressors in the Nucleus. 

Left panels: Box plots depicting protein abundances (in copy numbers) of TFs 

(black), coAs (red) and coRs (blue) at the indicated days. Right panels: Box plots 

depicting the mRNA abundances (in FPKM) of TFs, coAs and coRs at the indicated 

days. Two-tailed t-test: n.s. (non-significant), * p < 0.05. **p < 0.01. *** p < 0.001. 

**** p < 0.0001. For a list of TFs, coAs and coRs, see Table S4.  
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