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Highlights

e Overview of erythropoiesis and new discoveries using single-cell technologies to
understand cell fate decisions.

¢ Importance of determining the likelihood of cell fate progression and key factors
involved in cell fate determination.

e Creating predictive gene regulatory networks is essential for a comprehensive
regulatory model of erythropoiesis.

¢ Tools to identify clusters, trajectories, and create gene regulatory networks for a

better understanding of cell fate.
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Abstract

Every second, the body produces 2 million red blood cells through a process called
erythropoiesis. Erythropoiesis is hierarchical in that it results from a series of cell fate
decisions whereby hematopoietic stem cells progress towards the erythroid lineage.
Single-cell transcriptomic and proteomic approaches have revolutionized the way we
understand erythropoiesis, revealing it to be a gradual process that underlies a
progressive restriction of fate potential driven by quantitative changes in lineage-
specifying transcription factors. Despite these major advances, we still know very little

about what cell fate decision entails at the molecular level. Novel approaches that
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simultaneously measure additional properties in single cells, including chromatin
accessibility, transcription factor binding and/or cell surface proteins are being
developed at a fast pace, providing the means to exciting new advances in the near
future. In this review, we briefly summarize the main findings obtained from single cell
studies of erythropoiesis, highlight outstanding questions, and suggest recent

technological advances to address them.

Text

Introduction

Erythropoiesis is an important cellular differentiation process that leads to the formation
of red blood cells from hematopoietic stem cells (HSCs) [1, 2]. Owing to sophisticated
mouse models [3] and human ex vivo differentiation systems that recapitulate all steps
of differentiation [4], erythropoiesis has been comprehensibly analyzed, which makes it
an ideal model system to address outstanding questions in biology. For example,
enhancers were first characterized through extensive analyses of transcription at the -
globin locus during erythroid differentiation [5]. More recently, erythropoiesis was among
the first complete cellular differentiation systems analyzed by droplet-based single cell
RNA sequencing (scRNAseq) [6-8] and single cell proteomics [9]. In this review, we
highlight these (and other [10, 11]) studies, which together with novel experimental tools
and innovative analysis methods, hold the promise to advance beyond the cellular level

towards a mechanistic understanding of cell fate choice in erythropoiesis.

I- Current state of knowledge from single cell studies of erythropoiesis.
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One of the main findings from early transcriptomic [6-8, 12] and proteomic [9] single cell
profiling was the gradual nature of erythropoiesis whereby HSCs undergo a progressive
restriction of fate potential driven by quantitative changes in lineage-specifying
transcription factors (LS-TFs) [13]. This concept, which is supported by both
transcriptomic and proteomic data provided a very precise description of the early
stages of erythropoiesis showing a continuum of differentiation with accumulation of
some known, as well as novel, populations at specific points along the erythroid
trajectory. Furthermore, these studies revealed for the first-ime co-expression of LS-
TFs in individual multipotent progenitors at both RNA and protein levels. Importantly,
overexpression experiments demonstrated that quantitative changes in the level of a
non-erythroid TF is sufficient to deviate progenitors from their preferred erythroid
trajectory towards a non-erythroid lineage [9] providing proof-of-principle that

quantitative changes in TFs protein levels direct cell fate decision in individual cells.

Another notable finding was the identification of alternative paths to the traditional
hematopoietic tree, including an unexpected coupling of the erythroid and the basophil

lineages, which again is supported by both transcriptomic and proteomic data [6, 7, 9].

More recently, the “Cellular Indexing of Transcriptomes and Epitopes by sequencing”
(CITEseq) approach [14] that provides simultaneous measures of the transcriptome and
cell surface proteins in single cells (Figure 1; Table 1 and see section Il below for more
details) was used in several studies of erythropoiesis. For example, Doty et al. [11]

identified a “death” trajectory that is taken by a significant proportion of erythroid
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progenitors at the proerythroblast stage when they express high levels of heme. In this
study, the coupling of cell surface proteins to the transcriptome was instrumental in
validating the erythroid differentiation trajectory. Furthermore, this study exemplifies the
power of single cell approaches to identify small pro-apoptotic cells that could not have
been isolated or expanded in vitro without altering their phenotype. Thus, the
implementation of single cell technologies presents a viable alternative to the use of
fluorescent-activated cell sorting (FACS) for specialized cell populations. Another study
using CITEseq led to the identification of granulocytic precursors and macrophages that
physically associate with erythroid cells in the bone marrow as part of the erythro-
myeloblastic island [10]. Again, cell surface markers coupled to transcriptomic
measurements allowed for a more precise definition of those cells, highlighting the

usefulness of coupling these two layers of information.

ll- Outstanding questions

Single cell transcriptomic has now become a standard approach to examine phenotypes
and phenotypic changes during development and disease. However, major questions
remain that go beyond the description of lineages and their relationships. In this section,
we highlight three questions that we believe have the potential to be addressed by

recently developed single cell multi-omics approaches (Figure 2).

1. Infer cell fate probability along the erythropoietic lineage.

Single cell measurements that sample large numbers of cells at multiple stages of

differentiation provide an unprecedented opportunity to infer a probability for each cell
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derived from HSCs to become erythroid or to diverge and become another cell type.
Such fate maps are indispensable to understanding the mechanism of cell fate decision
because they allow one to correlate changing molecular properties to the dynamic of
cell fate decisions. Several approaches have been developed to infer fate probability
along differentiation trajectories, including PBA [15], FatelD [16], Palantir [17] and more
recently CellRank [18]. One way to estimate the extent to which inferred probability truly
reflects cell fate is to combine lineage tracing with scRNAseq at different time-points
such that gene expression at one time point can be correlated to fate at a later time
point. Such approaches, termed lineage-tracing with single-cell RNA sequencing (LT-
scSeq) require the introduction of genetic barcodes that are unique, heritable and
detectable by sequencing, and are therefore typically limited to ex vivo differentiation
systems, transplanted cells and/or genetically engineered mice [19-23]. Nevertheless,
these approaches are very powerful as they revealed for example that cell fate decision
occurs earlier than predicted by scRNAseq and that the transcriptome alone (as
measured by scRNAseq) is not sufficient to accurately predict cell fate [20]. This
suggests that additional heritable properties (e.g. chromatin accessibility) contribute to
fate determination. Interestingly, a recently developed inducible Cas9 barcoding mouse
line (DARLIN) that combines lineage-tracing with simultaneous measures of
transcription, DNA methylation and chromatin accessibility in single cells (using a plate-
based approach named Camellia-seq) showed that DNA methylation is strongly
associated to clonal memory [24], which highlights the importance of incorporating DNA

methylation measurements to cell fate decisions models.



Journal Pre-proof

While genomic barcodes provide a practical method for lineage reconstruction, somatic
mutations in mitochondrial DNA also allow clonal tracking [25], offering a potential

approach for human in vivo lineage-tracing.

2. Measure the key players of cell fate decision and their quantitative changes

along the erythroid trajectory.

The realization that transcripts alone are not sufficient to estimate cell fate probabilities
highlights the need to measure additional molecular properties in single cells. In this
section, we propose a list of molecular players that are likely to be major actors of the

cell fate decision process.

Proteins: we and others have shown dramatic discrepancies between transcript levels
and protein levels, mostly during dynamic processes like erythropoiesis [26]. Such
discrepancies are particularly problematic for lineage-specifying TFs and signaling
TFs [27] that together represent the main drivers of cell fate decisions and should
therefore be measured at the protein level. Furthermore, these proteins often work in a
dose-dependent mannier [28-30] and should therefore also be quantified, ideally using
absolute quantification approaches that provide copy-number measurements [31].
Because they mediate the function of TFs, cofactors including chromatin-modifying
enzymes should also be quantified at the protein level. Finally, cell surface proteins
(not RNAs) should be measured to facilitate purification of prospective populations

(Figure 2).
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Chromatin accessibility: given that chromatin is inherently refractory to transcription,
measures of chromatin opening offer critical information on the portions of the genome
that have the potential to be transcribed. While regions of opened chromatin are often
used to infer TF binding through DNA-binding motifs enrichment, one must keep in mind
that these inferences are likely compromised by the complexity of the rules governing
TF binding including large redundancies between TFs of the same family [32]. Thus, it is

important to measure TF binding directly (Figure 2).

TF genomic binding: to facilitate identification of TF target genes, it is necessary to

directly measure TF genomic binding in single cells.

Histones and DNA modifications: chromatin modifications provide critical information

pertaining to gene expression and should therefore also be measured in single cells.

Spatial transcriptomics: Single-cell transcriptomic approaches such as multiplexed
error robust fluorescence in situ hybridization (MERFISH) [33] or sequential
fluorescence in situ hybridization (SEQFISH+) [34] provide invaluable information on
cell-to-cell interactions, or the position of cells within a tissue. However, those
approaches are difficult to combine with the simultaneous measures of other modalities

by high-throughput multi-omics approaches (Figure 1).

While single cell measurements are often performed in stem and progenitor cells, it may
be important to analyze all cells along the erythroid trajectory, including cells that are
thought to be committed. Indeed, our data [26] and that of others [35] showed that TFs

from non-erythroid lineage are still expressed in late erythroid progenitors. Furthermore,
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transgenic mouse experiments combining the knockout of LSD1 with lineage-tracing
revealed that late erythroid progenitors can deviate towards the myeloid lineage, which

suggests these cells have not completely lost their myeloid potential [35, 36].

3. Understand cell fate decisions by building predictive gene regulatory

networks that integrate the main players of erythropoiesis

Maybe one of the most challenging aspects of understanding erythropoiesis is to
integrate the main players described above into a biologically meaningful model that
takes into account all regulatory aspects underlying cell fate decisions. Ideally, such a
model should be dynamic, quantitative and predictive. Several attempts have been
made at building gene regulatory networks of erythropoiesis [37, 38], including our own
temporal model that integrates quantitative changes in protein and mRNA abundances
of transcription factors [26]. However, these models have not been built based on single
cell measurements. In the next section, we highlight some selected technical and
analytical advances that we believe will be key in the progression towards a global

regulatory model for erythropoiesis at the single cell level.

lll- Single cell multi-omics tools to decipher erythropoiesis

While bulk RNA sequencing has been widely utilized in numerous fields of biology and
health research, the primary function of this technique is to measure RNA in many cells
within a sample of interest, allowing for the determination of the average expression

level of individual genes from the same sample [39]. However, when studying complex
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systems such as erythropoiesis and the various pathologies associated with this
lineage, it is necessary to have more detailed information on the heterogeneity of the
samples of interest and each cell population. To address this issue, single-cell RNA
sequencing has gained importance as a means of compensating for the lack of
information on the heterogeneity of cell groups. Many research groups are now utilizing
this technology to determine the gene expression of each cell providing critical insights

into the transcriptional activity and fate decisions of these cell populations [39].

The most widely used single cell approach is based on single cell suspension and gel
bead emulsion that creates a fine droplet of oil containing a single cell (Figure 1). This
process, coupled with next-generation sequencing, has drastically reduced the cost of
this technology. Other methods, such as piate-based approaches that provide for
deeper sequencing of individual cells or nuclei, are more expensive and challenging

[40].

Data analysis generally begins with clustering based on the Louvain or Leiden
algorithms [41, 42]. Combined with t-SNE (t-distributed Stochastic Neighbor
Embedding), UMAP (Uniform Manifold Approximation and Projection for Dimension
Reduction) or FA (Force Atlas) graphical representations, the SCANPY, scVl-tools,
Bioconductor and Seurat workflows then allow one to categorize all samples by cell type
based on RNA expression, thus providing information on sample heterogeneity [43-47]
(Table 1). In addition, further study can be performed using trajectory analysis tools
such as PAGA (Partition-Based Graph Abstraction) [48] or sc-Velo [49] that select or

detect a root cell and use RNA information to infer cell trajectories. These tools also
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incorporate pseudo-time into their approach to reconstruct differentiation pathways

(Figure 2; Table 1).

Using scRNA-seq techniques, numerous studies have demonstrated the diversity and
complexity of the hematopoietic differentiation process, which involves precise
regulation of cell fate with a clear hierarchical structure at different stages [13].
However, scRNA-seq only provides information on transcriptomes and not on proteins.
While single-cell protein data can also be obtained using approaches such as
Cytometry by Time Of Flight (CyTOF) [9] to measure transcription factors, this approach
is limited to 50 proteins that can be measured simultaneously. Finally, scRNAseq does
not provide information on other important molecular layers, such as chromatin
accessibility and/or cell surface markers that are necessary to purify cell populations of
interest. These issues can be addressed at least partly by single cell multi-omics
approaches that provide simultaneous information on several layers of information
including transcriptome, chromatin opening and/or cell surface proteins. Multi-omics
approaches have been developed through barcoding, enabling each cell to be marked
with a unique marker identifier (UMI) and each layer of information to be marked with
different barcodes. These techniques generally couple two layers of data. Furthermore,
methods have recently been developed that simultaneously cover up to three layers
[50]. Below, we describe selected single-cell approaches (experimental and analytical)
that go beyond sc-RNAseq and that we find the most promising for shining light onto the

mechanism underlying cell fate decision mechanisms in erythropoiesis.

1. Experimental advances
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CITEseq (Cellular Indexing of Transcriptomes and Epitopes by sequencing) [14]
(Figure 1; Table 1). The principle of CITEseq is based on incubating cells with a
cocktail of barcoded antibodies, that can extend to cover several hundred cell surface
proteins. Once the incubation is complete, the cells undergo a gel bead emulsion (GEM)
process for single-cell droplet encapsulation, followed by cell lysis (Figure 1). Then,
antibody barcodes are hybridized to reverse transcript oligonucleotides bound to beads
for future library preparation and sequencing. CITEseq combines information on the
transcriptome and the cell surface proteins and allows the construction of precise cell
trajectories during different stages of development based on scRNA-seq and the
expression of cell surface proteins in single cells [14]. The strength of the CITEseq
approach is provided by the information on cell surface proteins which makes it possible

to isolate cell populations for further analysis and in vitro or in vivo validation.

Sci-CAR (Single-cell Combinatorial indexing for Chromatin Accessibility and RNA) [51]
(Figure 1; Table 1). Transcriptome and cell surface proteins are not the only possible
combinations for multi-omics since techniques can now also integrate chromatin
accessibility. Indeed, single-cell multi-omics approaches can integrate scRNA-seq with
transposase-accessible chromatin (scATAC-seq). First, the nuclei are separated and
spread out in a plate. Then, specific barcodes are added to each well along with RNA
and ATAC indexes. The ATAC barcodes also include Tn5 transposase, which cuts at
regions of open chromatin. This technique combines scATAC-seq and scRNA-seq on
several thousand cells, providing information on the dynamics of chromatin accessibility
and gene expression. Furthermore, 10X genomics now offers a commercial kit for the

simultaneous measure of scRNA and scATAC in microfluidic systems. Overall, this
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technique provides a better understanding of the role of epigenetics in cell fate

decisions and memory processes.

TEAseq [52] and DOGMAseq [53] (Figure 1; Table 1). These recently developed
techniques combine three layers of data: transcripts, cell surface proteins (i.e epitopes)
and chromatin accessibility, and are thus termed trimodal (Figure 1). They are based
on the principle of CITEseq, but the cells are permeabilized during the preparation
process after antibody incubation. Once permeabilized, the cells are incubated with the
Tn5 transposase, which enters the nucleus and introduces DNA barcodes into open
chromatin of each cell. The cells are then isolated by gel bead emulsion in
microdroplets containing specific beads. Those beads contain poly-A-tail for the
isolation of the transcriptome and cell surface proteins tags. A Tn5 oligo is also present
for the ATAC-seq library. This trimodal technique captures transcriptomes, cell surface
proteins, and open chromatin to provide a more complete analysis of the differentiation

process and the possibility of purifying rare cell groups for further study [52, 53].

In addition, DOGMAseq has been developed to provide the added possibility of
measuring a fourth modality i.e. mitochondrial DNA (mtDNA) [53] (Figure 1; Table 1).
DOGMAseq offers two possible paths to achieve this: one involves cell fixation to
preserve mtDNA, while the other involves a slight permeabilization similar to the
TEAseq protocol, which allows for the detection of cell surface proteins. In summary,
DOGMAseq has demonstrated that mtDNA can be detected as a fourth modality if
combined with fixation or slight permeabilization. Fixation is better for detecting mtDNA
and permeabilization is better for detecting cell surface proteins. However, it is

important to note that TEAseq can also detect mtDNA using the permeabilization with
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digitonin approach [52]. Thus, it is possible to use either approach depending on the
specific question being asked. Using DOGMAseq, the authors have demonstrated its

effectiveness in resolving bone marrow heterogeneity [53].

Sc-multi-CUT&Tag (Single-cell multi Cleavage Under Targets and Tagmentation) [54]
(Figure 1, Table 1). While the above techniques provide a wealth of information on
chromatin opening, the transcriptome and cell surface proteins, it is important to realize
that motif enrichment as measured by ATACseq data does not necessarily equate to
transcription factor binding. Furthermore, the above approaches do not provide
information on histone modifications. To obtain information on DNA-protein interactions
or histone modifications in single cells it is possible to use sc-multi-CUT&Tag [54], an
approach adapted from CUT&Tag [55] that combines antibodies against multiple
transcription factors, cofactors and/or histone modifications. The sc-multi-CUT&Tag
method provides information on the interactions between multiple proteins with
chromatin by combining antibodies directed against the proteins of interest with a
protein A-Tn5 (pA-Tn5) transposase fusion protein pre-complexed with barcoded
oligonucleotides [54]. A recent variation of this method, named nano-CUT&Tag (or
nano-CT) proposes to use a nanobody directly fused with Tn5 instead of a secondary

antibody [56].

These single-cell approaches will enable characterization of the heterogeneity of

several subpopulations in thousands of cells.
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2. Analytical advances

As described above, a large number of multi-omics methods have recently emerged
that combine several modalities such as transcriptome, chromatin accessibility and cell
surface proteins. These approaches have the potential to measure multiple types of
data simultaneously in each cell, revealing new information on differentiation processes
and cell fate. However, analyzing such data requires powerful tools to extract relevant
biological information. We now emphasize some tools that we believe will be the most

useful to study erythropoiesis.

Data_Integration, Data Transfer and Traiectory Analyses. Multi-omics data

analysis can be challenging owing to the complexity of the sequencing information
provided by multi-layers of data. Furthermore, some pipelines are designed to handle
paired or unpaired data. Paired data refers to measurements of multiple modalities
performed simultaneously on the same samples, such as the TEAseq technique [52].
Unpaired data, on the other hand, originates from different techniques and/or different
biological samples. It is important to know which computational tools to use for
incorporating all layers of data [57]. Among the many available workflows that analyze
multi-omic data, the scVI-tools suite provides powerful computing pipelines based on a
combination of probabilistic approaches and machine learning [45]. Here we describe
several of the scVI-tools (as well as other tools) for multi-omics analyses (Figure 1;

Table 1).
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CITEseq has gained popularity because of its efficiency and the ability to utilize over a
hundred antibodies [14]. However, it is important to note that data analysis should not
solely focus on the scRNA-seq component. It is also not recommended to rely
exclusively on cell surface proteins for validation. ScVI-tools offers Total Variational
Inference (TotalVl), a joint probabilistic analysis that combines both modalities to derive
a joined representation [58]. TotalVI has been designed to analyze CITEseq data using
both sequencing modalities (Table 1). The approach applies mathematical tools and
trains a model by machine learning using RNA and protein layers with the option of
adding a batch correction [58]. TotalVI also features protein normalization to distinguish
foreground from background, joint representation, and differential expression testing. Its

efficiency has already been shown studying for example immune cells in mice [59].

The Yosef group also recently developed the MultiVI pipeline [60]. MultiVI first focuses
on two modalities: transcriptome and open chromatin modalities. It proposes to analyze
gene expression and chromatin opening with a deep generative model for probabilistic
analysis. The model is suitable for experiments involving simultaneous multimodal
measurements and can also integrate a third modality, such as cell surface proteins.
Thus, it is ideal for performing analyses on data from TEAseq [52] or DOGMAseq [53]
(Figure 1; Table 1). Furthermore, the model also offers the possibility of integrating
non-paired data, and it can consider technical issues such as background noise and
batch effect by integrating batch information, as also proposed by TotalVI [58]. The
batch information in TotalVI [58] and MultiVI [60] pipelines enable a correction to be
made to incorporate the data correctly in a latent space, considering experimental

differences between samples.
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Overall, the SCVI-tools pipelines take the best of deep machine learning by combining
multi-modalities from different multi-omics techniques, making them a potent tool for
analyzing complex datasets [45]. The authors have proven that their model can
thoroughly investigate the heterogeneity of samples and lead to a better understanding

of cell fate decisions by integrating all modalities.

Machine learning not only integrates paired and unpaired data but can also use
multimodal data to perform data transfer on samples that lack one of the modalities. For
example, scArches (Single-Cell Architecture Surgery) can use a TotalVlI model to
extract protein measurements from CITEseq combined with gene expression to train the
model and then perform “surgery” for data transfer [61] (Table 1). Thus, it is possible to
take the CITEseq data as a reference model to be trained and matched on a query
dataset with scRNA-seq only. Then the models are trained again to perform a data
transfer on the query dataset and give in silico protein values on a scRNA-seq dataset
while considering batch correction [61]. Using these models, it is possible to analyze
large datasets with multimodalities and integrate other data sets from atlases to include

more cells or add missing information.

The above-described models are partly used to realize the latent representation with
multiple modalities. They can be completed by additional computer tools that perform
trajectory analyses and deduce a pseudo time to study cell differentiation (Figure 2).
Tools like Partition-Based Graph Abstraction (PAGA) [48] can analyze latent space sets

from TotalVI [58], MultiVI [60] or other pipelines and deduce trajectories starting from a
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root cell. PAGA associates each previously identified cluster with a node linked together
by weighted edges with the thickness of the ridges showing the degree of connectivity
between clusters [48]. The thicker the edges, the greater the connections representing a
statistical measure of the connectivity between the identified clusters. Cells are then
ordered according to their distance from the root cell. The path established by PAGA
then represents the average of all single-cell courses passing through the
corresponding cell clusters. It is then possible to deduce the pseudo time from the root
cell to track the progression of differentiation (Figure 2).

Many pipelines can be used to carry out data integration and trajectory studies. In
addition to the methods described above, we note the popular Seurat pipelines that also
offer numerous tools for analyzing multi-modaiity data [46], Seurat uses single
modalities first to create a single-modality latent space. The single modalities are then
integrated by identifying anchors to propose a new latent space comprising both

modalities [46].

From Lineage Trajectories to Gene Requlatory Networks. Trajectory studies

are not the only analyses that can result from the sequencing of RNA and other
modalities. Indeed, multi-modality sequencing can also be used to decipher the
mechanisms underlying gene regulation. We mention MIRA, an innovative pipeline
based on machine learning, which can analyze a latent space such as MultiV| based on
gene expression and chromatin opening modalities [62]. Interestingly, MIRA can
perform a complete series of analyses from clustering to latent representation,

trajectories, pseudo-time analysis, and critical regulators identification (Figure 2; Table
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1). This is another efficient approach to analyzing multi-modal data. For more details on

MIRA, please refer to the paper describing this pipeline [62].

In addition to trajectories, the establishment of gene regulatory networks (GRNs) can
help to answer critical questions, such as identifying transcription factors that regulate
gene expression and better understand the importance of chromatin structure [50]
(Figure 2). Here, we describe some selected approaches that have been used to
establish GRNs. First, we note that scRNAseq is, for the most part, sufficient to
establish GRNs. However, including other modalities can help to derive GRNs that are
more precise and robust. Here we focus on three approaches: Single-cell Multi-Task
Network Inference (scMTNI) [63], Dyctis [64] and single-Cell rEgulatory Network
Inference and Clustering + (SCENIC+) [65]. These three pipelines can use paired or

unpaired scRNA-seq and scATAC-seq to infer GRN (Figure 2; Table 1).

The first approach, sc-MTN! [63], uses single-cell data from multi-omics considering a
cell lineage tree. It is a powerful tool to infer a detailed gene regulatory network for each
cell type on a previously defined lineage trajectory. Sc-MTNI can also integrate paired,
unpaired, and/or bulk data to establish the final gene regulatory networks. The authors
have shown the robustness of their network by applying sc-MTNI to a human
hematopoietic dataset. Notably, sc-MTNI was able to identify new regulators linked to
hematopoietic regulatory mechanisms and confirm known hematopoietic regulators.
Thus, scMTNI is an effective tool for identifying the regulators that steer cells towards a

particular path.
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The second approach, Dyctis [64], also uses scRNAseq and scATACseq data, but
infers time-resolved GRNs by using pseudo-time information and context-specific
transcription factors footprints. In addition, Dyctis provides a function to compare
context-specific networks. Finally, Dyctis can identify TFs with changes in regulatory

activities but no change in their levels of expression.

The third approach, SCENIC+ [65], is the only method that focuses on the inference of
gene regulatory networks from enhancers to create enhancer-based GRNs (eGRNs).
Moreover, it can detect the presence or absence of enhancers in every cell population
identified. Notably, SCENIC+ uses a comprehensive database for TF binding motifs and
includes a computational perturbation algorithm to predict the effects of knocking out

specific TFs on the GRN.

Thus, these three approaches to GRN inference have different objectives and can help

answer complementary biological questions in gene regulation (Figure 2; Table 1).

IV- Conclusion

The emergence of single-cell RNA-seq and multi-omics approaches has revolutionized
our understanding of cellular and molecular mechanisms at the single-cell level. The
limitations of bulk methods have been overcome by the detailed characterization of
cellular heterogeneity, particularly in complex processes such as erythropoiesis.

Approaches such as CITE-seq, TEAseq, and DOGMA-seq integrate genome,
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proteome, and chromatin structure, offering more comprehensive insights into cellular
mechanisms (Figure 1; Table 1). Advanced analysis pipelines such as Sc-VI, MIRA
and scMTNI harness the power of machine learning to integrate and interpret complex
multi-omics data, revealing cellular trajectories, pseudo-times, and gene regulatory
networks (Figure 2). However, much remains to be done to derive molecular
information at the gene level, and to address key questions such as the molecular
underpinnings of cell fate decision at the gene and chromatin levels in early progenitors.
For this, new analysis methods to derive GRNs that incorporate additional information
(TF binding, protein levels) as well as new analytical methods that allow comparative
analyses between cell trajectories or between experimental conditions are warranted.
The future lies in continuously improving these techniques, enabling a deeper
exploration of cellular mechanisms and a more precise understanding of complex

biological processes.

FIGURE LEGENDS
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Figure 1: Multi-modal measurements in single cells for erythropoiesis.

In this diagram we first show the possibility of spatial transcriptomics using
MERFISH/SeqFISH techniques. This is made possible by the commercial MERSCOPE
Platform, which can perform spatial measurement from an organ section such as bone
marrow (left panel). The panel on the right shows an example of principal differentiation
during erythropoiesis. It is possible to select any stage to perform single cell multi-omics
measurements. We then represent the concept of a single droplet encapsulation
containing cells and beads. We first zoom in to show that it is possible to perform cell
surface markers measurement and/or mitochondrial DNA depending on the technique
chosen. We then zoom in to focus on the nucleus. From here, it is possible to perform

numerous measurements at the same time or not, depending on the technique chosen.
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These include chromatin accessibility, transcriptomes, histone modifications and/or TF

binding, and finally the possibility of measuring the availability of transcript factors (right-

hand panel).
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Figure 2: Single ce!l multi-omics workflow for erythropoiesis.

In this figure we illustrate one of the possible paths of multi-omics experiment at the
single cell level for the different stages of differentiation during erythropoiesis. The first
part (from top to bottom) shows the 4 main stages of differentiation from multi-potent
progenitors to mature cells. We have then represented the different stages of
differentiation in more detail for each of the 4 main stages. We then created a first
cartoon representation of a possible measurement modality that can be obtained

simultaneously or individually. These modalities can include the measurement of cell
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surface proteins, RNA, chromatin accessibility, and transcription factor binding. The final
diagram explains the main analyses that can be conducted, which are clustering,

trajectory, and gene regulatory networks.

Table 1: Summary of single cell multi-omics approaches.

In this table, we summarize the main multi-omics approaches detailed in this review. For
each approach, we specify the different targets and measurements that these different
techniques can provide. We then associate with each technique the available software
and tools capable of analyzing these data using multi-modalities. References for each of

these measurement and analysis techniques are given.
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